

QuakeCoRE Flagship 4 Meeting

Composite Floor Diaphragm Testing

Hooman Rezaeian

Prof. Charles Clifton & Dr. James Lim

May 2018

Outline

1. Nonlinear Time History Analysis

- 1. Inertia forces
- 2. Displacement compatibility forces

2. Experimental Test

In-Plane Shear Forces

Two main types of diaphragm actions are:

1. Inertia forces

It is equal to the floor mass multiplied by the floor acceleration caused by an earthquake.

2. Displacement compatibility forces

Displacement compatibility forces generated by deformation incompatibility of different lateral force resisting systems

Shear force contour (kN/m)-Christchurch earthquake (2011)

1. Nonlinear Time History Analysis

Christchurch earthquake (February 22, 2011 Resthaven)

El Centro 1940 earthquake (Imperial valley)

Hokkaido earthquake (HKD085-2003)

Inertial forces for each floor of a 12-story building due to different ground motions and ductility factors

1. Nonlinear Time History Analysis

Inertial forces for each floor of a 12-story building due to different ductility factors

Mean of inertial forces for each floor for three earthquakes a) Actual b) Trend

12th floor-Christchurch earthquake (2011)- Step 13.85s

Conclusions

- * Nonlinearity actions decrease inertial forces, and consequently nonlinear analysis results in smaller forces compared to linear analysis.
- * Smaller ductility factor results in greater inertial forces.
- * Inertial forces for all floor levels are close to each other except near the top floors.
- Inelastic actions on one side of the building resulted in torsion of building and induced compatibility forces in floor diaphragms and could increase the interface forces up to 30%.

2. Experimental Tests

甲甲甲

Jaho In

1.11

3.

CF60 (Comflor) Floor Decking th=0.75 mm

CF60 (Comflor) Floor Decking

ŦŦ

th=0.75 mm

2. Experimental Tests

Deck laying

Rebar Placement

Concreting

Concreting and Curing

ComFlor

