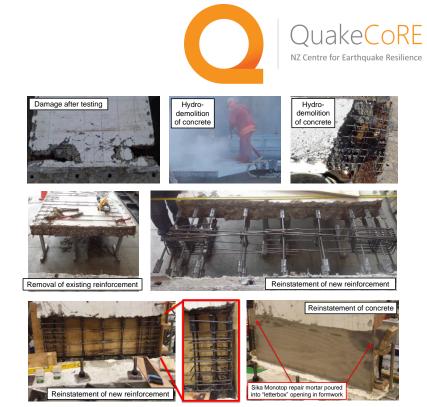


NZ Centre for Earthquake Resilience

Lower-damage Walls

QuakeCoRE FP4 2017 project

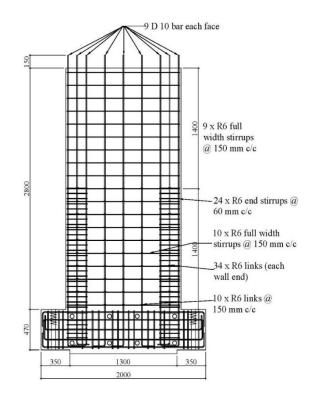


Team

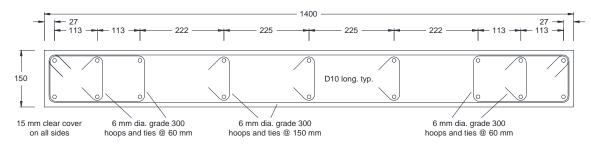
- Rick Henry (Auckland)
- Keri Ryan (University of Nevada, Reno)
- Ken Elwood (Auckland)
- Alessandro Palermo (Canterbury)
- Yiqiu Lu (Auckland Post-doc)
- Stephen Blount (University of Nevada, Reno MSc)
- Zhibin Li (Auckland CSC exchange)
- Peter Smith (FP4 advisor, NZSEE president)
- Nic Brooke (Compusoft)
- Craig Stevenson (Aurecon)

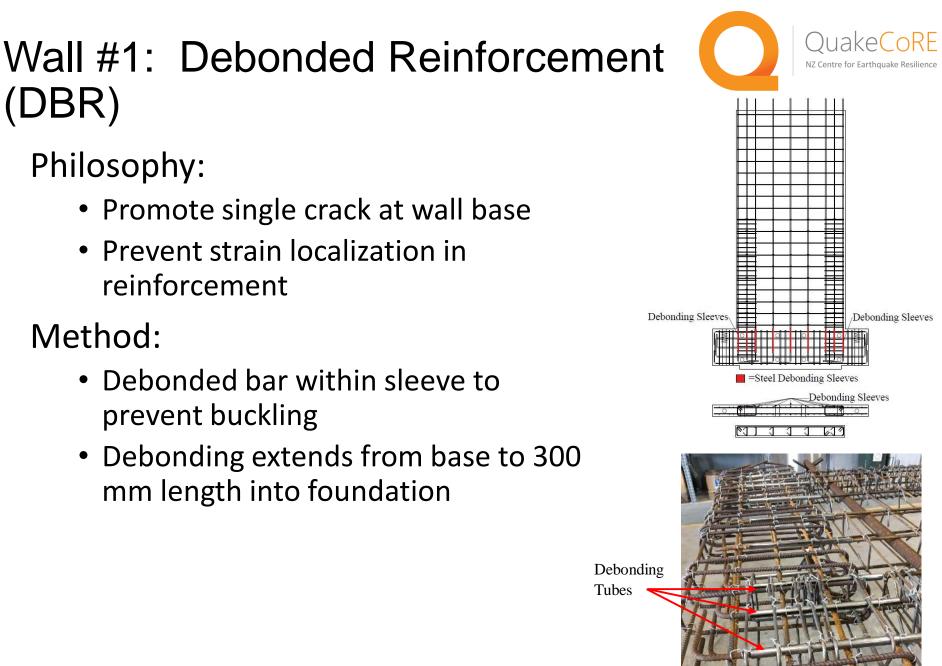
Background

- Repair of conventional concrete walls possible but difficult [2016 QC project]
- Low-damage concrete walls mostly based on PT rocking systems
- Need a range of alternative solutions



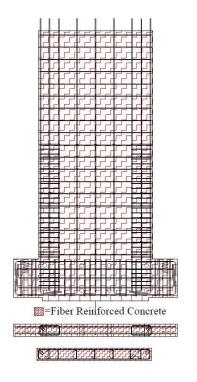
Objectives


- Experimentally evaluate lower-damage modifications relative to a benchmark conventional RC wall
 - Debonded reinforcement (DBR)
 - Fiber-reinforced concrete (FRC)
 - ECC cutouts in wall boundary elements (ECC)
 - ECC cutouts + higher axial load (ECC-H)
- Assess the reparability and residual capacity of the tested alternative wall solutions

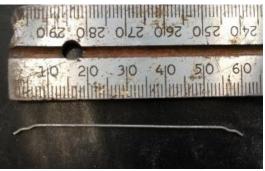

Benchmark (BM) Wall

- M5 (Lu 2016)
- Designed per NZS 3101:2006 Amendment 3
 - Shear span ratio = 2
 - Axial load ratio = 3.5%

(DBR)


Wall #2: Fiber Reinforced Concrete (FRC)

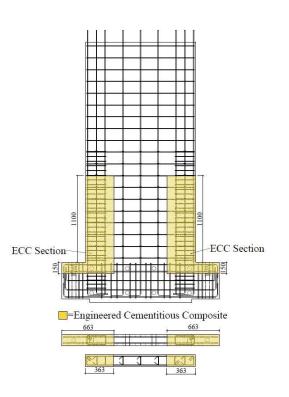
Philosophy:


- Enhance performance with minimal impact to constructability.
- Fiber concrete offers increased tensile and compressive strength, and possible tensile strain hardening

Method:

 Add steel fibers at 1% volume ratio to conventional concrete

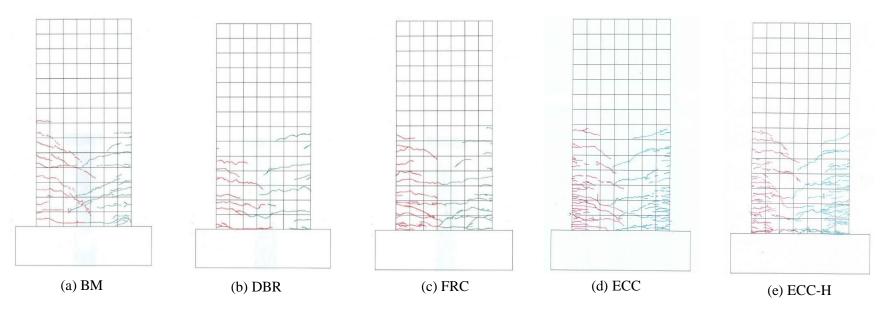
Ouake(


Walls #3 & 4: ECC cutouts (ECC and ECC-H)

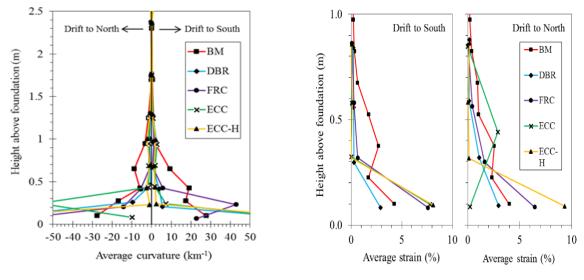
Philosophy:

- Use ECC in most damage prone boundary element regions of wall.
- Benefits of ECC
 - Tensile ductility and strain hardening behavior
 - Synthetic PVA fibers produce microcracking and prevent crack localization
 - Self-confining, no spalling

Method:


- Replace concrete with ECC in plastic hinge region
- Cast concrete first, followed by ECC after removal of boundary formwork.
- Mixed ECC in buckets with a drill in the laboratory.

Response at low drifts


Crack pattern maps at 0.50% drift

Comparison of average crack spacing and max crack width

	_		Wall		
At 0.50% drift	BM	DBR	FRC	ECC	ECC-H
Average Number of Cracks	10	10	15.5	27.5	24
Average Crack Spacing	140	141	90	51	58
Maximum Crack Width		3.3	1.5	2.3	1.7

- ECC & FRC propagated cracks
- DBR mimicked rocking wall

Response at high drifts

(a)

Comparison of (a) average curvature and (b) average reinforcement strain at 1.50% drift for all walls.

(b

Test Wall	Drift at Buckling (%)		Average Reinforcement Tensile Strain (%)	
	Drift to North	Drift to South	Drift to North	Drift to South
BM	$+2.00\%^{3}$	-1.50% ³	4.3%	4.4%
DBR	$-2.50\%^{3}$	$+2.00\%^{2}$	6.2%	3.8%
FRC	-1.00% ³	$+1.50\%^{2}$	3.6%	6.6%
ECC	-	-1.00% ³	-	4.6%
ECC-H	-1.00% ¹	_	5.5%	_
		Average	4.9%	4.9%

Comparison of occurrence of buckling and associated reinforcement strain.

- BM 2-3 dominant cracks
- Four LD walls localized to one crack
- BM better distribution of curvature & reinforcement strain
- DBR reduced reinforcement strain

Reparability at 1.50% drift (FEMA-P58)

NZ Centre for Earthquake Resilience

BM (DS2a)

- Epoxy inject dominant cracks
- Patch spalling of boundary elements

Wall At 1.50% drift BM DBR FRC ECC ECC-H Average Number of Cracks 15.5 12.5 19 30 24 Average Crack Spacing 90 117 76 47 58 Maximum Crack Width 16.0 22.5 20.5 17.5

DBR (DS2)

• Paint surface crack

FRC (DS4)

Replace steel and concrete due to bar buckling

ECC (DS4)

Replace steel and concrete due to bar buckling

ECC-H (DS4)

Replace steel and concrete due to bar buckling

Drift Cycle

+1.50%1

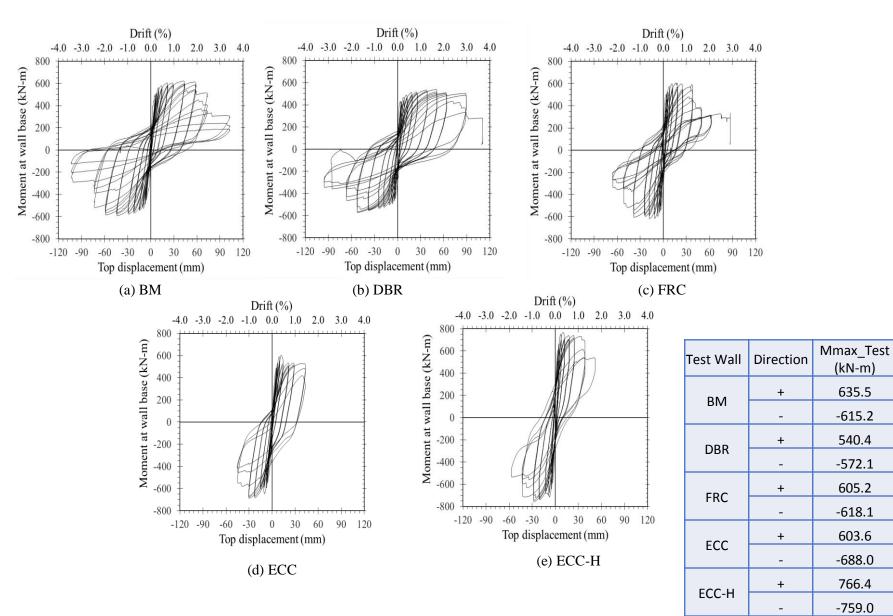
-1.50%¹

+2.00%1

-2.00%1

+0.75%¹

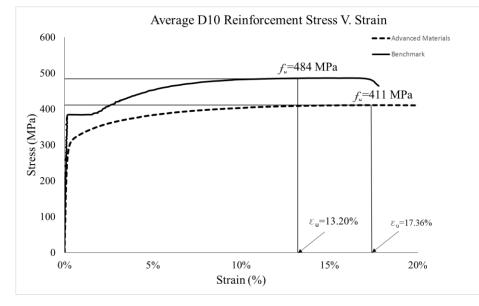
-0.75%¹


+0.50%1

-0.75%¹

+0.50%1

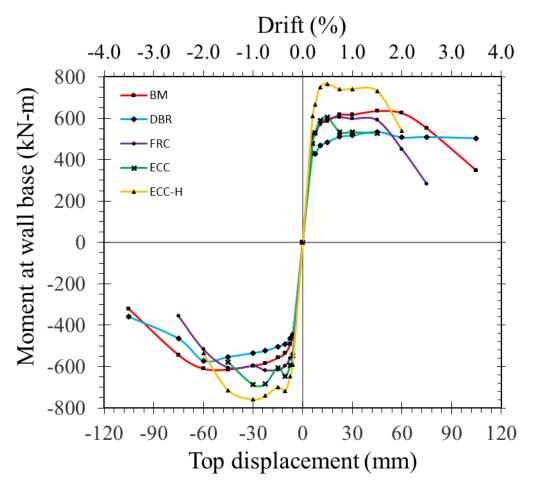
-1.00%¹


Moment- Displacement Response

QL NZ Cent

Material Tests

Comparison of D10 vertical steel characteristics.


- Coiled steel in advanced material walls
- ECC walls tested 3 months later than other tests
- FRC and ECC had increased tensile properties

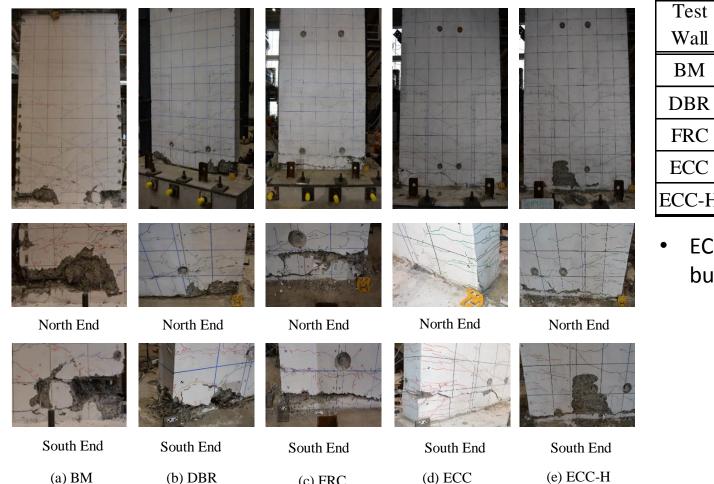
Steel	f_y	f_u	\mathcal{E}_{y}	Eu
Benchmark (D10)	387	484	0.40%	13.20%
Advanced Materials (D10)	314	411	0.35%	17.36%
Benchmark (R6)	322	450	-	16.40%
Advanced Materials (R6)	340	462	0.34%	14.96%

Test Wall	Concrete		
(days)	f_{cm} (MPa)	f_t (MPa)	$\rho_{\rm c}(\rm kg/m^3)$
BM	31.2	2.15	2337
DBR (31)	35.8	3.19	2395
FRC (37)	38.6	3.95	2422
ECC (129)	52.0	3.26	2412
ECC-H (127)	43.6	3.48	2398

Test Wall	ECC		
(days)	f_{cm} (MPa)	f_t (MPa)	$\rho_{\rm c}(\rm kg/m^3)$
ECC (83)	47.3	5.1	2000
ECC-H (84)	50.5	5.0	2006

Backbone Curves

- Reduced ultimate steel strength lead to decreased moment capacity
- DBR strength would have been comparable to BM, FRC and ECC would have been higher
- ECC and FRC walls showed a deformation softening behavior which suggests tensile strain softening of materials


Concrete

Spalling

 $-1.50\%^{1}$

-1.50%¹

Final Condition of All Walls

FRC	$+0.75\%^{3}$	$+1.50\%^{3}$		
ECC	$+1.50\%^{3}$	-1.50% ¹		
ECC-H	-1.00% ³	-1.00% ³		
ECC did not spall until				

Bar

Fracture

 $+2.00\%^{3}$

 $+2.00\%^{3}$

buckling and fracture

Final condition of all test walls and exploded views of wall toes.

(c) FRC

Conclusions

- BM wall had best distribution of curvature and reinforcement strain over the wall height. Generally, lower damage modifications fell short of expectations.
- DBR concept delayed bar buckling, but fracture occurred almost immediately after buckling.
- ECC and FRC walls had increased crack propagation at low drifts, but eventually crack localization occurred and dominant cracks formed.
 - FRC likely to be more effective with higher fiber volume ratio (2%)
 - Hand mix method may have negatively impacted ECC material properties (tensile strain hardening)