Research Summary 14 March 2019

Kieran Haymes

Developing Procedures for the Prediction of Floor Response Spectra

le w nare wananga o waitana CHRISTCHURCH NEW ZEALAND

Instrumented Buildings

UC Physics Building From McHattie, 2013

BNZ Wellington Building From Chandramohan, et al., 2017

NZS1170.5 Predictions – BNZ CentrePort Building

Spectra generated using acceleration response history at floor 5

ACSE 7-16 Alternate Method

 $A_{ix} = p_{ix}S_{ai}D_{AF}$

 A_{ix} – Acceleration contribution of mode i on floor x
 p_{ix} – Modal participation of floor x in mode i (participation factor x mode shape)

- S_{ai} Ground spectral acceleration of mode i
- D_{AF} Dynamic amplification factor

ASCE 7-16 and NZS1170.5 Predictions – UC Physics Building

2% NS damping

5% NS damping

ATC 2018 Report

$$\frac{F_{p}}{W_{p}} = PGA \times \left[\frac{\left(\frac{PFA}{PGA}\right)}{R_{\mu bldg}}\right] \times \left[\frac{\left(\frac{PCA}{PFA}\right)}{R_{pocomp}}\right] \times I_{p}$$

- PGA Peak ground acceleration
- PFA/PGA Amplification factor from PGA to Peak Floor Acceleration PFA
- PCA/PFA Amplification factor from PFA to Peak Component Acceleration PCA, including component ductility
 R_{μbldg} Reduction factor for building global ductility
 R_{pocomp} Reduction factor for inherent component overstrength
 - Importance factor

I_p

ATC 2018 Report

Table 4-2 PC	CA/PFA Values			
		Compone		
Location of Component	Possibility of Being in Resonance with Building	Category ⁽¹⁾	Assumed Ductility	$\left(\frac{PCA}{PFA}\right)^{(2)}$
Ground	More Likely	Elastic	$\mu_{comp} = 1$	2.5
		Low	µ _{comp} = 1.25	2.0
		Moderate	µ _{comp} = 1.5	1.8
		High	µ _{comp} ≥2	1.4
	Less Likely	Any		1.0
Roof or Elevated Floor	More Likely ——	Elastic	μ _{comp} = 1	4.0
		Low	µ _{comp} = 1.25	2.8
		Moderate	µ _{comp} = 1.5	2.2
		High	µ _{comp} ≥2	1.4
	Less Likely	Any		1.0

⁽¹⁾ Categories will be assigned to components similar to ASCE/SEI 7-16 Table 13.5-1. Categories need to be determined.

⁽²⁾ Inherent component damping of 5% is assumed as a default.

 T_{abldg} is from code eqn for T_1

ATC 2018 Report

Table 4-2 PC	CA/PFA Values			
		Component Ductility		
Location of Component	Possibility of Being in Resonance with Building	Category ⁽¹⁾	Assumed Ductility	$\left(\frac{PCA}{PFA}\right)^{(2)}$
Ground	More Likely	Elastic	$\mu_{comp} = 1$	2.5
		Low	µ _{comp} = 1.25	2.0
		Moderate	$\mu_{comp} = 1.5$	1.8
		High	µ _{comp} ≥2	1.4
	Less Likely	Any		1.0
Roof or Elevated Floor	More Likely	Elastic	$\mu_{comp} = 1$	4.0
		Low	µ _{comp} = 1.25	2.8
		Moderate	$\mu_{comp} = 1.5$	2.2
		High	µ _{comp} ≥2	1.4
	Less Likely	Any		1.0

⁽¹⁾ Categories will be assigned to components similar to ASCE/SEI 7-16 Table 13.5-1. Categories need to be determined.

(2) Inherent component damping of 5% is assumed as a default.

Further Improvements

- Simplified methods for predicting modal properties
 - T₁ simplified expression
 - T_{Higher modes} / T₁ standard ratios
 - Standard mode shapes
- Decay curve for DAF shape
 - Compatibility with floor displacement response spectra
- Introducing DAF_{max} term to scale DAF by NS damping
 - Capture dynamic amplification of lower damping
- Research into NS Element post-elastic behaviour and damping