Project F4.3 <u>17137</u> – July update Seismic loss assessment to motivate high performance building solutions

Team members:

Tim Sullivan Rajesh Dhakal Ken Elwood Quincy Ma Trevor Yeow (Postdoc) Shreehar Khakurel (PhD) Amir Orumiyehei (PhD/collaborator)

Key Objectives

- 1. Demonstrate how loss assessment could be an effective means of quantifying the benefits of innovative construction technologies
- 2. Test and develop options for simplified loss-assessment appropriate for preliminary design phase
- 3. Identify and develop loss functions for non-structural elements for NZ usage
- 4. Identify functions from literature suitable for NZ construction, and develop fragility functions for components unique to NZ.

Key Objectives

- 1. Demonstrate how loss assessment could be an effective means of quantifying the benefits of innovative construction technologies
- 2. Test and develop options for simplified loss-assessment appropriate for preliminary design phase
- 3. Identify and develop loss functions for non-structural elements for NZ usage
- 4. Identify functions from literature suitable for NZ construction, and develop fragility functions for components unique to NZ.

Objective 1 – Loss assessment of case study buildings

- Stage 1: Develop case study building layouts
 - Drawings available on QuakeCoRE wiki
 - Design loading document in draft
- Stage 2: Obtain information required to estimate damage and losses
 - No progress since June update (focused on building design)
- Stage 3: Design buildings featuring innovative construction technologies
 - Two steel moment-resisting frames being designed; one with traditional connections and one with friction connections
- Stage 4: Apply loss assessment methodologies to assess benefits of using innovative technologies
 - Structural model developed, currently being checked

Objective 1 – Loss assessment of case study buildings

- Stage 1: Develop case study building layouts
 - Drawings available on QuakeCoRE wiki
 - Design loading document in draft

Stage 2: Obtain information required to estimate damage and losses

No progress since June update (focused on building design) ____.

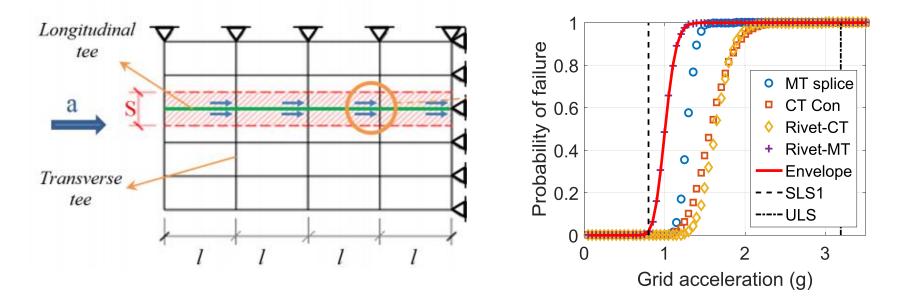
Stage 3: Design buildings featuring innovative construction technologies

- Two steel moment-resisting frames being designed; one with traditional connections and one with friction connections
- Stage 4: Apply loss assessment methodologies to assess benefits of using innovative technologies
 - Structural model developed, currently being checked

×/✓ indicates the progress of sourcing/developing fragility and consequence functions for case study layout

Building component	Fragility	Consequence
Structural beam/column/walls	\checkmark	×
Floor slabs	×	×
Stairs	\checkmark	×
Façade	\checkmark	\checkmark
Partitions	\checkmark	\checkmark
Ceiling	\checkmark	\checkmark
Heavy Plant	×	×
Sprinklers	\checkmark	×
Elevators	\checkmark	\checkmark

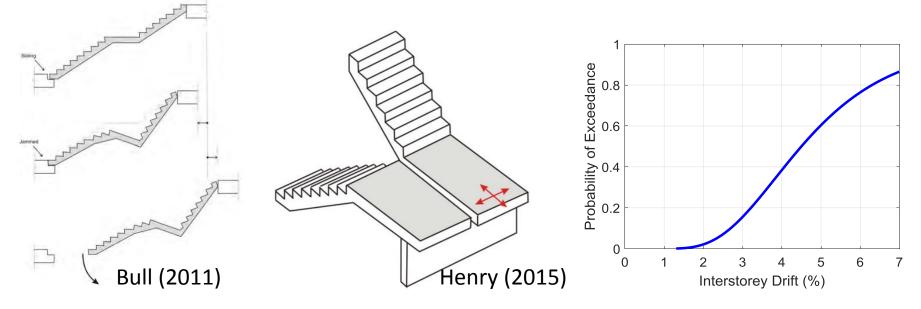
1) Experimental data approach


Example: Partitions

Source	ID	Test Type	DS1	DS2	DS3
	4	In Plane – Quasi Static	0.62	0.62	1.16
	5	In Plane – Quasi Static	0.20	0.40	2.32
	6	In Plane – Quasi Static	0.40	0.62	2.66
Davis et al. (2011)	7	In Plane – Quasi Static	0.20	0.62	1.00
	8	In Plane – Quasi Static	0.40	1.99*	1.00
Davis et al. (2011) Petrone et al. (2015) Tasligedik (2014) Restrepo and Lang (2011)	9	In Plane – Quasi Static	0.20	0.40	0.62
	10	In Plane – Quasi Static	0.20	1.00	0.81
	1	In Plane – Quasi Static	0.34	0.87	0.62 0.81 2.78
Petrone et al. (2015)	4	In Plane – Quasi Static	0.32	1.16	1.61
Tasligedik (2014)	N/A	In Plane – Quasi Static	0.30	0.75	N/A
Postrono and lang (2011)	1	Two Directions – Quasi Static	0.28	0.61	0.77
Kestrepo and Lang (2011)	2	Two Directions – Quasi Static	0.28	0.82	0.82

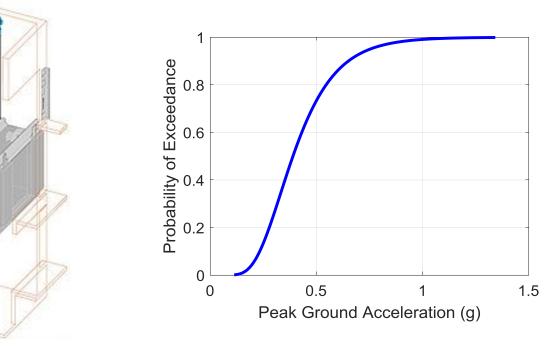
2) Mechanics approach using component tests

Example: Ceilings (Dhakal et al., 2016)


Fragility functions for individual ceiling components (e.g. rivets, tees) developed at UC. Used a mechanics approach to calculate demand on components and hence failure probability.

3) Engineering judgement/mechanics

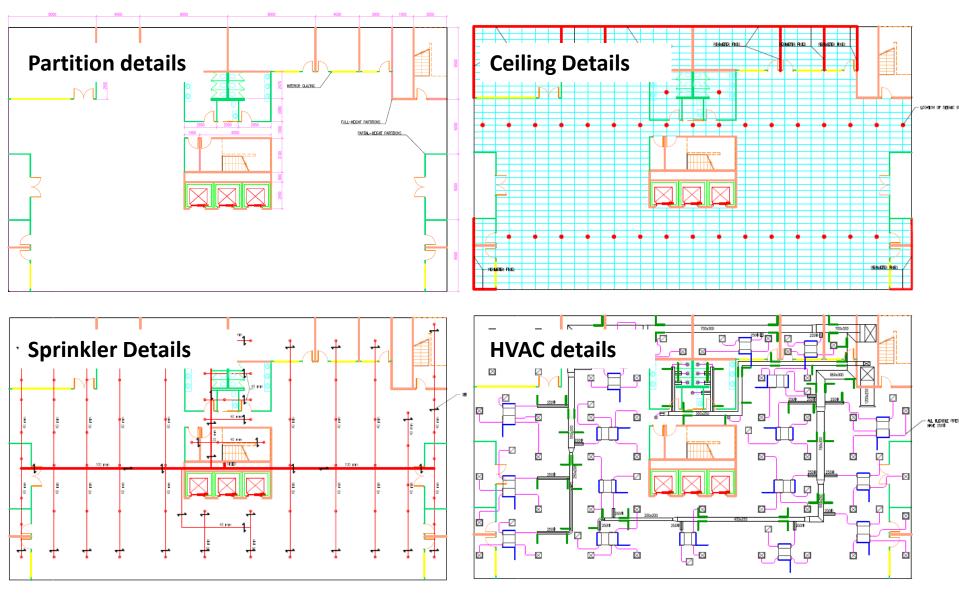
Example: Stairs


- Simmons (2000) tested precast straight stairs
- Switchback stairs mostly used in new construction
- Assumed stairs will not be damaged if free to slide, and only "failure" would be loss-of-support (width specified in design)

4) Directly from literature

Example: Traction elevators (Porter, 2016)

 Based on observations from Loma Prieta and Northridge events

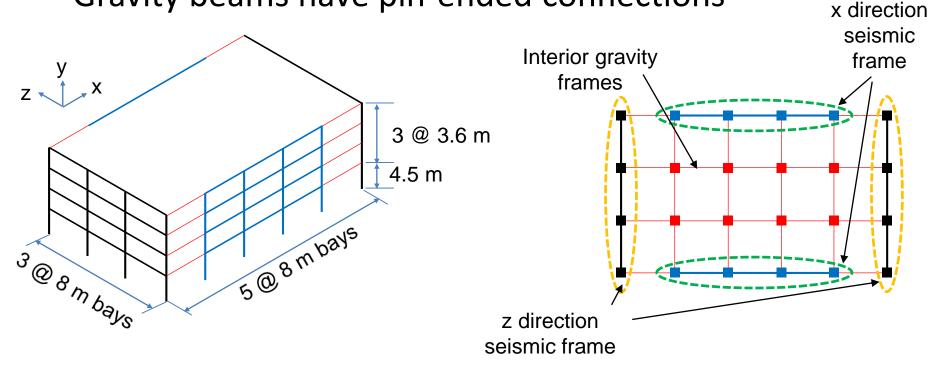

Objective 1 – Loss assessment of case study buildings

- Stage 1: Develop case study building layouts
 - Drawings available on QuakeCoRE wiki
 - Design loading document in draft
- Stage 2: Obtain information required to estimate damage and losses
 - No progress since June update (focused on building design)

Stage 3: Design buildings featuring innovative construction technologies

- Two steel moment-resisting frames being designed; one with traditional connections and one with friction connections
- Stage 4: Apply loss assessment methodologies to assess benefits of using innovative technologies
 - Structural model developed, currently being checked

Building Layout

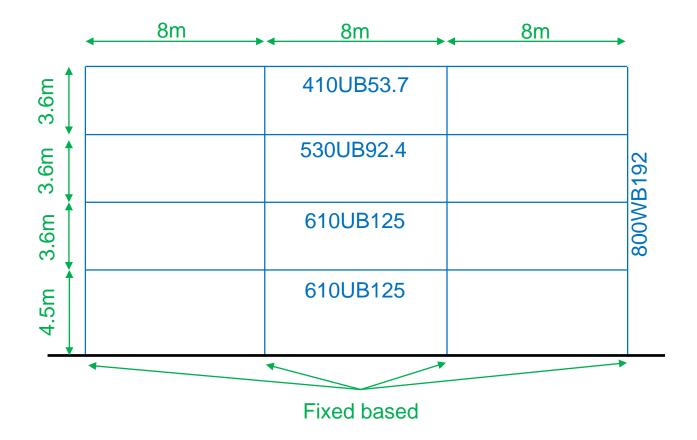


Case study buildings planned or being designed

- Steel buildings:
 - 1. Moment resisting frame (MRF) with traditional connections
 - 2. MRF with friction connections
 - 3. MRF with viscous dampers
 - 4. Eccentrically braced frame
 - 5. Base isolated MRF

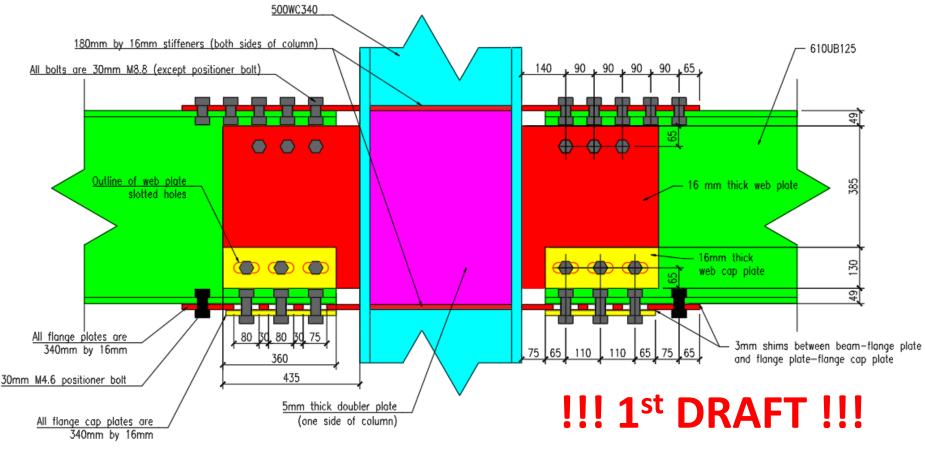
Building layout (currently 4-storey, but 12-storey planned in future)

- Exterior columns have fixed-base connections
- Interior columns have pinned-base connections
- Gravity beams have pin-ended connections


Building details:

- Office usage located in Christchurch
- $\mu = 4$ at ultimate limit state seismic action
- $\mu = 1$ at serviceability limit state seismic action (some moment redistribution allowed)
- $\mu \leq 1$ for all other actions

Site details:


- Subsoil type D conditions for seismic action
- Terrain category of 4 for wind action
- Region N4 sub-alpine conditions for snow action

Member sizing:

Design of connections:

 With guidance from Gregory MacRae and Charles Clifton

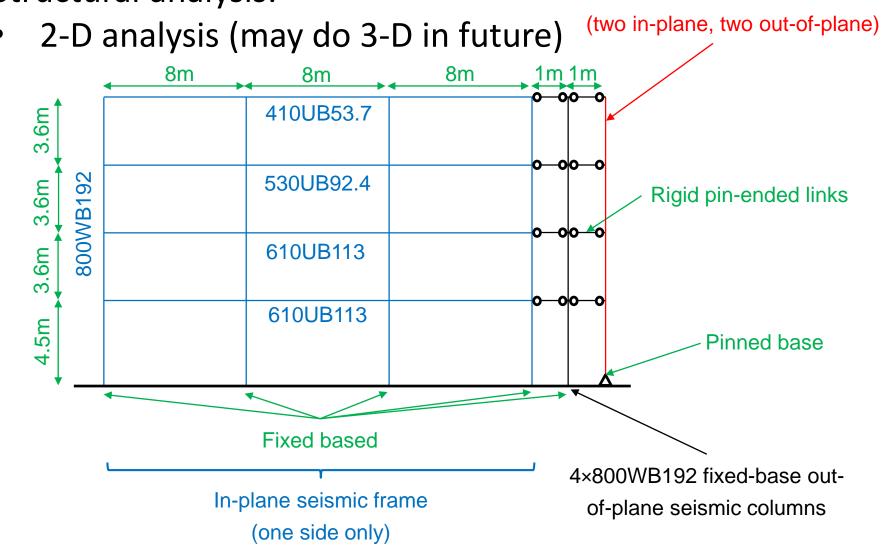
Design report in draft:

- Elastic modelling approach and assumptions
- Derivation of demands
- Detailed design of a beam-column and column-base joint
- Detailed checks of other members
- Inelastic modelling approach and assumptions for checking design using non-linear time history analyses

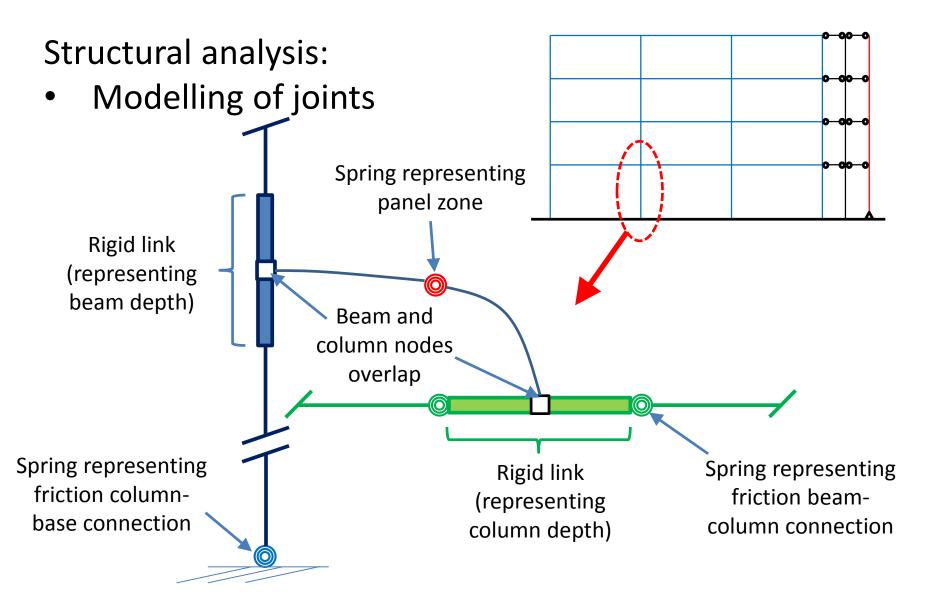
Beneficial as publication document for industry or for students as a reference

Objective 1 – Loss assessment of case study buildings

- Stage 1: Develop case study building layouts
 - Drawings available on QuakeCoRE wiki
 - Design loading document in draft
- Stage 2: Obtain information required to estimate damage and losses
 - No progress since June update (focused on building design)
- Stage 3: Design buildings featuring innovative construction technologies
 - Two steel moment-resisting frames being designed; one with traditional connections and one with friction connections

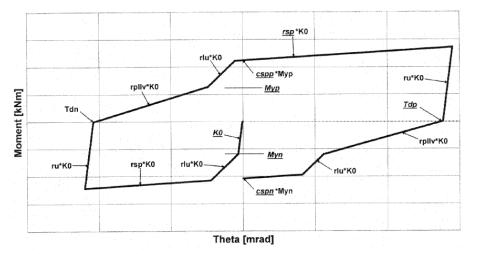

Stage 4: Apply loss assessment methodologies to assess benefits of using innovative technologies

Structural model developed, currently being checked

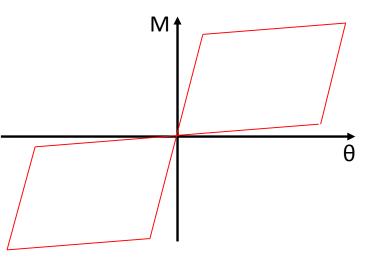

Stage 4: Loss Estimation Study

Structural analysis:

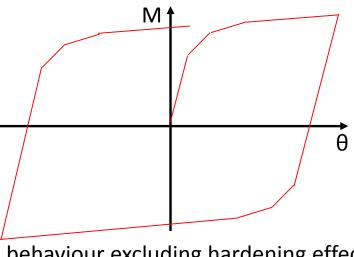
4×310UC96.8



Stage 4: Loss Estimation Study

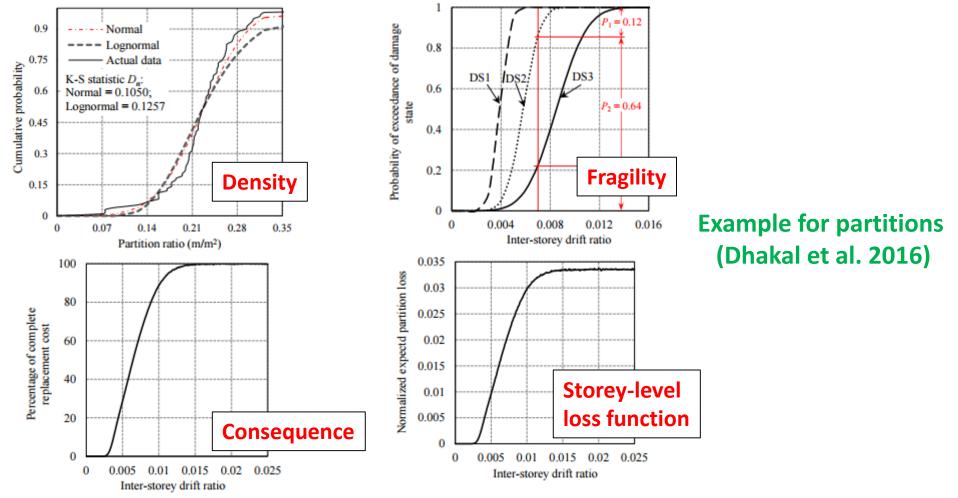


Stage 4: Loss Estimation Study


Structural analysis:

Friction beam-column connection (from Ruaumoko2D)

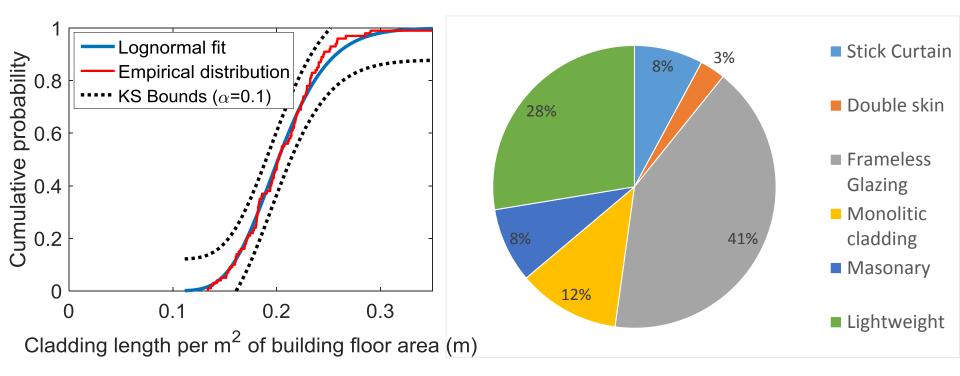
Friction column-base connection (based on tests from Borzouie (2016))


Panel zone behaviour excluding hardening effect (from Kim and Engelhardt (2002))

Key Objectives

- 1. Demonstrate how loss assessment could be an effective means of quantifying the benefits of innovative construction technologies
- 2. Test and develop options for simplified loss-assessment appropriate for preliminary design phase
- 3. Identify and develop loss functions for non-structural elements for NZ usage
- 4. Identify functions from literature suitable for NZ construction, and develop fragility functions for components unique to NZ.

Aim:


 Developing storey-level normalized loss functions for use in simplified loss estimation approaches

- Building Survey
- Building usage
- Total exterior surface area
- Type of cladding
- Percentage of exterior surface area covered by given cladding type (for building front, sides, and back)

	"all dimensions in meter							Types of cladding															
Building Area Bu					Dimenssion			Certais Vall			stie	stick curtain			Double skin			Frameless glazing			monolithic cladding h		
	Area	Building ID	address	Туре	Storey	Length	Width	Useage	F	В	\$	F	В	\$	F	В	\$	F	В	\$	F	В	S
Turners Auction		1	6 Detriut PI	Commercial	2	45	20) Car seller										10	10	40			
Vision College Christchurch Campus	Ι	2	48 Hazelden Rd	Commercial	4	70	3	5 CarPark												8			
Hunter Furnituer	1	3	221 Moonhouse Ave	Commercial	3	100	60) Warehouse		I	I					I		9					T
Briscoes Homefare	1	4	196 Salisbury Street	Commercial	3	55	4() Warehouse							30	50	30	20	10				
Commercial Building (Selling)	1	5	113 Machester Street	Commercial	5	60	30	Commercial Building	[1	1	20	30	30	4	1		8	8	5			T
Office Products Depot	1	6	46 Bath Street	Commercial	1	20	30) Car parts										10		20	10		10
AA Insurance	1	7	8 Hawdon Street	Commercial	2	30	30) Car Testing	[T	1				5	5			7				T
Post Shop	750	8	54 Cashel Street	Commercial	1	30	2	5 Post shop			1				12	12	18	8	8	7			
Ganellen construction(Firstfloor)	1300	9	253 Monstreal Street	Commercial	1	50	28	6 Commercial	[T	T					1		50	50	28			T
Ganellen construction	1300	10	253 Monstreal Street	Commercial	2	50	28	6 Commercial			1					 		10	10	8			
Under construction	400	11	245 Montreal Street	Commercial	2	20	20) Commercial	[Ī	T	15	15	15		T							T
Storage House	625	12	6 Hawdon street	Commercial	1	25	2	5 Commercial			1					 		2					
Miles Contineatal	1296	13	60 Tuan street	Commercial	1	36	36	Car dealer	[I	T					T		33		20			Ī
Audis	528	14	32 Tuan Street	Commercial	1	22	24	Car dealer				20			2	22	24						
Audis(Second floor)	528	15	32 Tuan Street	Commercial	1	22	24	Car dealer	[I	T				17	22	24	5					T
Archibalds	1215	16	28 Tuan Street	Commercial	1	24	4	1 Commercial										28	0	35			
Archibalds(Second floor)	1215	17	28 Tuan Street	Commercial	1	24	4	1 Commercial			Ι	24	0	40		I		24	0	0			
Wilson	140	18	189 Antigua Street	Commercial	1	10	14	Commercial										8			0	10	14
Canterbury Medical Reasarch Fondation	400	19	195 Antigua Street	Commercial	1	20	20) Reasurch			I							20					
Canterbury Medical Reasarch Fondation	400	20	195 Antigua Street	Commercial	1	20	20) Reasurch										20		20	3	22	1
Electrolux Sales abd Service	484	21	210 Antigua Street	Commercial	1	22	22	2 Service			I					I		20			3		1
Lifetime	320	22	192 Moorhouse Avenue	Commercial	1	20	10	5 Service							10	10	15	10	10	15			
Lifetime	320	23	192 Moorhouse Avenue	Commercial	1	20	16	5 Service			Ι				10	10	15	10	10	15			
ENGEO	240	24	120 Montreal street	Commercial	1	12	20	Construction		l	1							16	2				
ENGEO(Second foor)	240	25	120 Montreal street	Commercial	1	12	20	Construction	[Ī	T					T							Ī
Deal	600	26	118 Montreal street	Commercial	1	15	6(Construction			I							15					
Deal(Other side)	300	27	118 Montreal street	Commercial	1	15	4(Construction		[Ι					Ι							
Active	900	28	113 Montreal Steet	Commercial	1	30	30) Seller			I					I		20	20				
Active(second floor)	900	29	119 Montreal Steet	Commercial	1	15	20		I	I	Ι					I							T

Sample findings for commercial buildings:

Distribution of amount of cladding used per m² of building floor area Common types of cladding used

- Surveying building contractors
- Common types/sizes/properties of cladding used in practice

• Methods for observing damage

• Repair strategies

• Cost of repairs

QuakeCORE annual workshop

Three posters:

- Would loss estimation help motivate the use of low-damage steel building design solutions?
- Developing generalized cladding loss functions for loss optimization seismic design
- Component damage fragility functions for New Zealand usage