Project F4.3 Seismic loss assessment to motivate high performance building solutions

Project Leader: Tim Sullivan

Assistant Leaders: Rajesh Dhakal Ken Elwood Quincy Ma

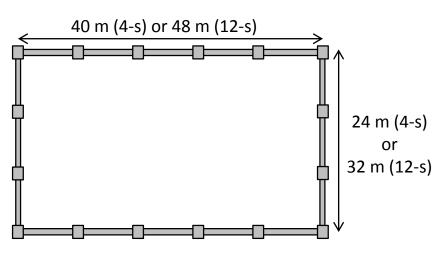
Postdoc: Trevor Yeow

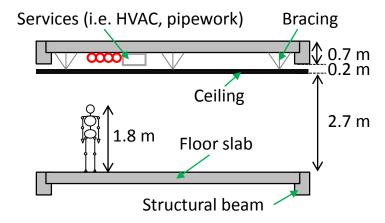
PhD Student: Shreehar Khakurel

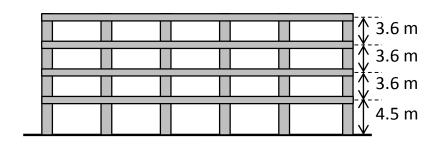
Key Objectives

- 1. Demonstrate how loss assessment could be an effective means of quantifying the benefits of innovative construction technologies
- 2. Test and develop options for simplified loss-assessment appropriate for preliminary design phase
- 3. Identify and develop loss functions for non-structural elements for NZ usage
- 4. Identify functions from literature suitable for NZ construction, and develop fragility functions for components unique to NZ.

Key Objectives

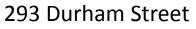

- 1. Demonstrate how loss assessment could be an effective means of quantifying the benefits of innovative construction technologies
- 2. Test and develop options for simplified loss-assessment appropriate for preliminary design phase
- 3. Identify and develop loss functions for non-structural elements for NZ usage
- 4. Identify functions from literature suitable for NZ construction, and develop fragility functions for components unique to NZ.


- Stage 1: Develop case study building layouts
- Stage 2: Obtain information required to estimate damage and losses (overlaps objectives 3 and 4)


 Stage 3: Design buildings featuring innovative construction technologies

• Stage 4: Apply loss assessment methodologies to assess benefits of using innovative technologies

- First case to be examined:
 - 4 storey office building
 - 24 m by 40 m rectangular plan
 - New construction
- 12 storey office and 4 storey residential to follow

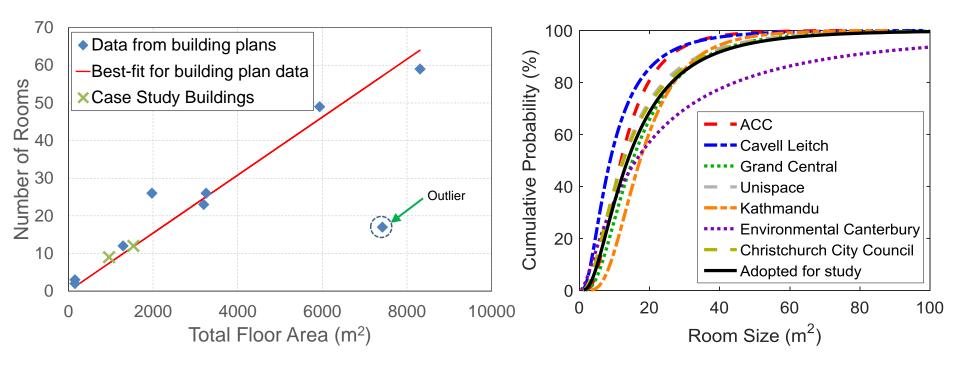


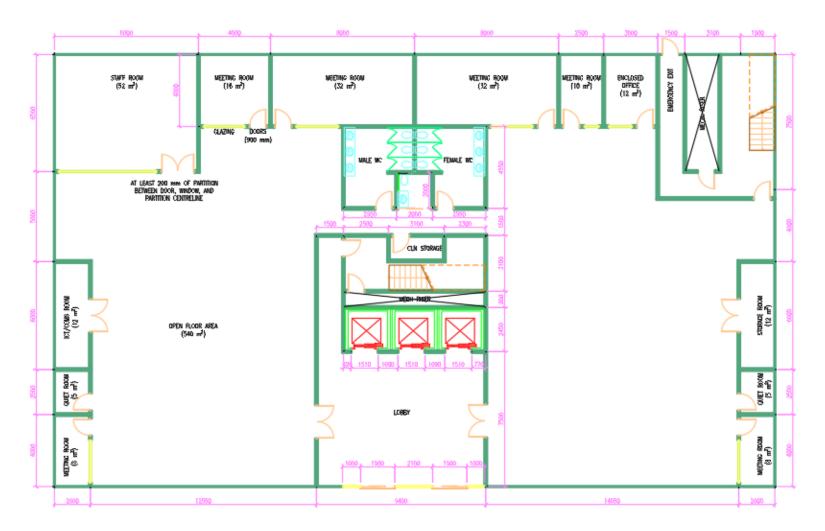
• Stage 1: Identified newly constructed buildings that is similar to desired case study building

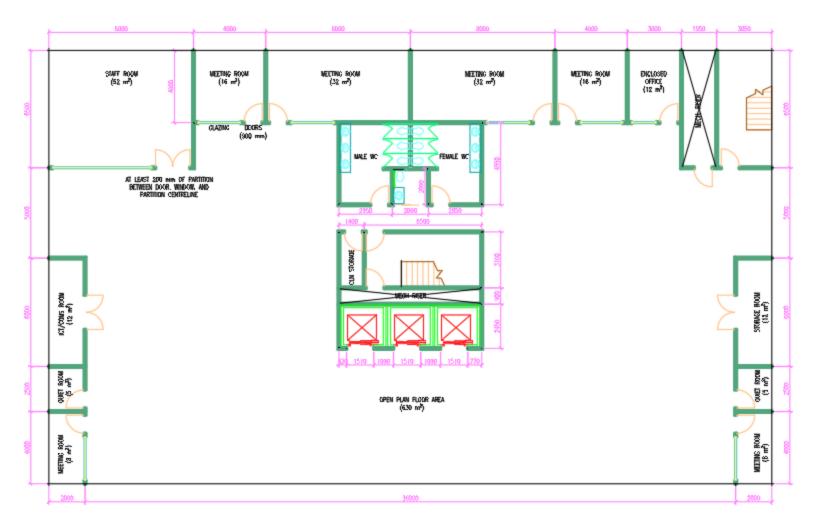
109 Cashel Street

161 Cashel Street

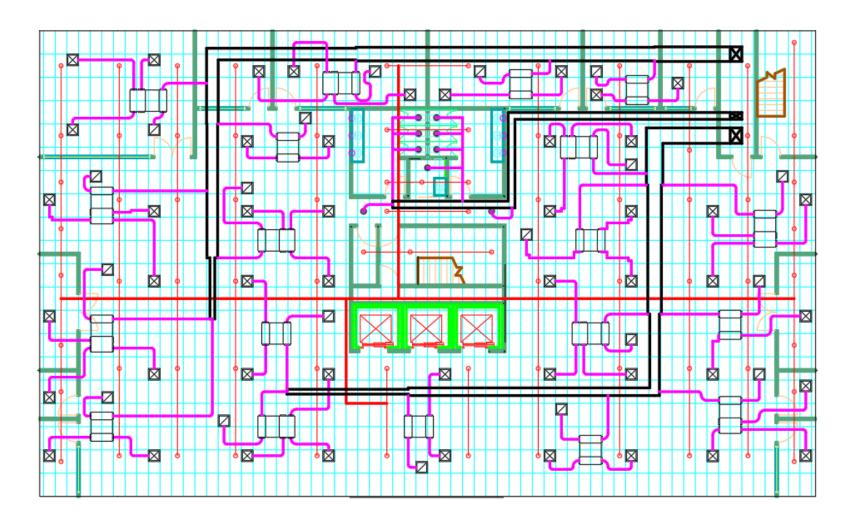
71 Gloucester Street




200 Tuam Street


229 Tuam Street

- Stage 1: Use building plans to estimate details of a "typical" building layout
 - Report to be uploaded to QuakeCore wiki page



Room layout – ground floor

Room layout – upper floors

Sprinkler and HVAC duct layout

Pages /... / FP4: Next-Generation Infrastructure: Low-damage and repairable solutions

Project FP4.3 - Usage of seismic loss assessment to motivate high performance building solutions

Created by Trevor Yeow, last modified on May 05, 2017

Project Title

Usage of Seismic Loss Assessment to Motivate High Performance Building Solutions

Research Team

- · Project Leader Tim Sullivan
- · Assistant Leaders Rajesh Dhakal, Ken Elwood, Quincy Ma
- Postdoc Trevor Yeow
- · PhD students Shreedhar Khakurel

Project Description

To achieve widespread implementation of low-damage systems, the economic benefits of such systems must be demonstrated. This requires a long term outlook and an assessment of life-cycle costs. To address this need, this strategic project will firstly highlight the potential benefits of adopting a life-cycle costing framework. By applying an assessment framework that permits comparison of both up-front and long-term costs, including future losses from earthquakes, to a selection of case study buildings realized with different design alternatives, it can be demonstrated that life-cycle cost analysis could be used to effectively quantify the improved performance offered by low-damage construction technologies.

Secondly, in order to assist the NZ engineering profession make a smooth transition towards such probabilistic seismic loss assessment, the project proposes to test and develop different simplified loss assessment methods.

Finally, recognizing that the accuracy of any loss assessment will depend on the quality of the inputs used, the project will identify and develop loss and fragility functions for elements typical of NZ construction practice.

Key Objectives

The main objectives of this project are as follows:

- 1. Demonstrate, via loss-assessment of a selection of case study buildings, how loss assessment could be an effective means of quantifying the benefits of innovative construction technologies.
- 2. Test and develop options for simplified loss-assessment appropriate for preliminary design phase, thus assisting the NZ engineering profession make a smooth transition towards probabilistic seismic loss assessment.
- 3. Identify and develop loss functions for non-structural elements that will assist with the application of loss assessment in New Zealand.
- 4. Review procedures for the definition of fragility functions, identify functions from literature suitable for NZ construction, and develop fragility functions for components unique to NZ buildings.

Case Study Building Plans

Most up-to-date version of the case study building plans are provided below. Past versions will be added if superseded.

Four-Storey Office Building

Ground floor

Floor Plan (no dimensions provided)

Upper floors

Floor Plan (no dimensions provided)

All drawings will be made available via QuakeCore wiki

Cools ·

- Stage 1: Develop case study building layouts
- Stage 2: Obtain information required to estimate damage and losses (also part of objective 4)

 Stage 3: Design buildings featuring innovative construction technologies

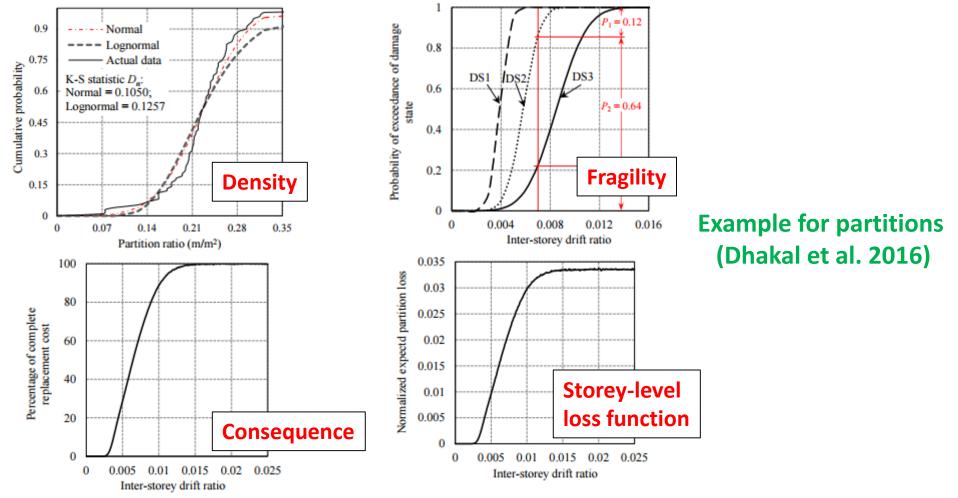
 Stage 4: Apply loss assessment methodologies to case studies

• Stage 2: Identify typical components used in newly constructed buildings (excluding main structural elements)

Category		Component	Qua	ntity	Fragility Function	Consequence Function				
			х	У	Function	Function				
Structural	Floor slabs	- Hollow core units - Double tee units - Comfloor units	? ? ?	? ? ?	×/? ×/? ×/?	×/? ×/? ×/?				
	Stairs		1	1	×/?	×/?				
Structural/non- structural	Cladding	- Precast panels - Glazing	- 80 m	48 m -	OBJI	ECTIVE 3				
	Partitions	- Full height - Partial height, braced at top - Glazing	? ? 15 m	? ? 4.5 m	✓ ×/? ×/?	✓ ×/? ×/?				
	Ceilings		?	?	✓	✓				
Non-structural	HVAC		?	?	×/?	×/?				
	Heavy plant o	n roof	?	?	×/?	×/?				
	Sprinklers		?	?	×/?	×/?				
	Elevators		3	3	✓	✓				

- Stage 1: Develop case study building layouts
- Stage 2: Obtain information required to estimate damage and losses (also part of objective 4)

 Stage 3: Design buildings featuring innovative construction technologies


 Stage 4: Apply loss assessment methodologies to case studies

Key Objectives

- 1. Demonstrate how loss assessment could be an effective means of quantifying the benefits of innovative construction technologies
- 2. Test and develop options for simplified loss-assessment appropriate for preliminary design phase
- 3. Identify and develop loss functions for non-structural elements for NZ usage
- 4. Identify functions from literature suitable for NZ construction, and develop fragility functions for components unique to NZ.

Aim:

 Developing storey-level normalized loss functions for use in simplified loss estimation approaches

Aim:

- Developing storey-level normalized loss functions for use in simplified loss estimation approaches
- Steps:
 - Familiarize with the types of cladding using in New Zealand
 - Survey buildings in Christchurch to identify which is most commonly used
 - Use data to obtain typical density of cladding elements
 - Survey engineers and contractors involved in repair work following the 2010-2011 Canterbury earthquakes to obtain damage-loss relationships
 - Obtain fragility functions for the most commonly used cladding types
 - Perform Monte Carlo simulations to obtain EDP-normalized Loss relationships at a storey-specific level

- Building Survey
- Building usage
- Total exterior surface area
- Type of cladding
- Percentage of exterior surface area covered by given cladding type (for building front, sides, and back)

"all dimensions in meter								Types of cladding															
				1		Dimenssion		1	Curtain Wall			stick curtain			Double skin			Frameless glazing			g monolithic cladding M		
Building	Area	Building ID	address	Туре	Storey	Length	Width	Useage	F	В	\$	F	В	\$	F	В	\$	F	В	\$	F	В	S
Turners Auction		1	6 Detriut PI	Commercial	2	45	20) Car seller										10	10	40			
Vision College Christchurch Campus	Ι	2	48 Hazelden Rd	Commercial	4	70	3	5 CarPark												8			
Hunter Furnituer	1	3	221 Moonhouse Ave	Commercial	3	100	60) Warehouse		I	I					I		9					T
Briscoes Homefare	1	4	196 Salisbury Street	Commercial	3	55	4() Warehouse							30	50	30	20	10				
Commercial Building (Selling)	1	5	113 Machester Street	Commercial	5	60	30	Commercial Building	[1	1	20	30	30	4	1		8	8	5			T
Office Products Depot	1	6	46 Bath Street	Commercial	1	20	30) Car parts										10		20	10		10
AA Insurance	1	7	8 Hawdon Street	Commercial	2	30	30) Car Testing	[T	t				5	5			7				T
Post Shop	750	8	54 Cashel Street	Commercial	1	30	2	5 Post shop			1				12	12	18	8	8	7			
Ganellen construction(Firstfloor)	1300	9	253 Monstreal Street	Commercial	1	50	28	6 Commercial	[T	T					1		50	50	28			T
Ganellen construction	1300	10	253 Monstreal Street	Commercial	2	50	28	6 Commercial			1					 		10	10	8			
Under construction	400	11	245 Montreal Street	Commercial	2	20	20) Commercial	[Ī	T	15	15	15		T							Ī
Storage House	625	12	6 Hawdon street	Commercial	1	25	2	5 Commercial			1					 		2					
Miles Contineatal	1296	13	60 Tuan street	Commercial	1	36	36	Car dealer	[I	T					T		33		20			Ī
Audis	528	14	32 Tuan Street	Commercial	1	22	24	Car dealer				20			2	22	24						
Audis(Second floor)	528	15	32 Tuan Street	Commercial	1	22	24	Car dealer	[I	T				17	22	24	5					T
Archibalds	1215	16	28 Tuan Street	Commercial	1	24	4	1 Commercial										28	0	35			
Archibalds(Second floor)	1215	17	28 Tuan Street	Commercial	1	24	4	1 Commercial			Ι	24	0	40		I		24	0	0			
Wilson	140	18	189 Antigua Street	Commercial	1	10	14	Commercial										8			0	10	14
Canterbury Medical Reasarch Fondation	400	19	195 Antigua Street	Commercial	1	20	20) Reasurch			I							20					
Canterbury Medical Reasarch Fondation	400	20	195 Antigua Street	Commercial	1	20	20) Reasurch										20		20	3	22	1
Electrolux Sales abd Service	484	21	210 Antigua Street	Commercial	1	22	22	2 Service			I					I		20			3		1
Lifetime	320	22	192 Moorhouse Avenue	Commercial	1	20	10	5 Service							10	10	15	10	10	15			
Lifetime	320	23	192 Moorhouse Avenue	Commercial	1	20	16	5 Service			Ι				10	10	15	10	10	15			
ENGEO	240	24	120 Montreal street	Commercial	1	12	20	Construction		l	1							16	2				
ENGEO(Second foor)	240	25	120 Montreal street	Commercial	1	12	20	Construction	[Ī	T					T							Ī
Deal	600	26	118 Montreal street	Commercial	1	15	6(Construction			I							15					
Deal(Other side)	300	27	118 Montreal street	Commercial	1	15	4(Construction		[Ι					Ι							
Active	900	28	113 Montreal Steet	Commercial	1	30	30) Seller			I					I		20	20				
Active(second floor)	900	29	119 Montreal Steet	Commercial	1	15	20		I	I	Ι					I							T

Aim:

- Developing storey-level loss functions for use in simplified loss estimation approaches
- Steps:
 - Familiarize with the types of cladding using in New Zealand
 - Survey buildings in Christchurch to identify which is most commonly used
 - Use data to obtain typical density of cladding elements
 - Survey engineers and contractors involved in repair work following the 2010-2011 Canterbury earthquakes to obtain damage-loss relationships
 - Obtain fragility functions for the most commonly used cladding types
 - Perform Monte Carlo simulations to obtain EDP-normalized Loss relationships at a storey-specific level