- Objective
 - Provides typical building layouts for use in seismic loss assessment studies for quantifying the relative performance of structural systems (e.g. low damage systems)
- Requires
 - Building geometry and mass for building design
 - Building component layout and density
 - Component detailing and construction cost
 - Others (e.g. repair method, cost, and duration)

- Building type and geometry
 - 4 storey residential
 - 4 storey office building
 - 12 storey office building

- Building location
 - Auckland, Christchurch, and Wellington
 - Ductility detailing
 - Nominally ductile for Auckland
 - Beam span
 - 8 m grid for Wgtn/Chch
 - 12 m grid for Auckland

NZS3101:2006, Table 2.5

	Type of structure	Reinforced concrete	Prestressed concrete with bonded non-prestressed reinforcement
1. Nomi	nally ductile structures	1.25	1.25
2. Struc	tures of limited ductility		
(a) M	oment resisting frame	3	3
(b) W	alls	3	3
(c) Ca (si	antilever face loaded walls ingle storey only)	2	2
3. Ducti	le structures		
(a) M	oment resisting frame	6	5
(b) W	all		
(i)	Two or more cantilevered	$\frac{5}{\beta_a}$	As for reinforced concrete
(ii)) Two or more coupled	$\frac{5}{\beta_a} \le \frac{3A+4}{\beta_a} \le \frac{6}{\beta_a}$	As for reinforced concrete
(iii) Single cantilever	$\frac{4}{\beta_a}$	As for reinforced concrete

Building Components
 – Flooring

Retrieved from www.comflor.co.nz on 26/02/2017)

Composite flooring:

- Steel buildings if not exposed

Retrieved from www.bancrete.com on 26/02/2017)

Double Tee flooring:

- Reinforced concrete buildings
- Steel buildings if exposed

- Building Components (façade)
 - Precast cladding
 - E.g. Ballantynes, Eastgate
 - Connections designed by engineer
 - Input from Rajesh?
 - Glass curtain wall
 - Top hung, bottom free to slide
 - Example of supplier Thermosash, Miller Design
 - Timber wall, plywood membrane
 - E.g. Ngai Tahu building
 - Not commonly used so exclude?

Retrieved from <u>www.wilcoprecast.co.nz</u> on 26/02/2017

Retrieved from www.thermosash.co.nz on 26/02/2017

- Building Components (stairs)
 - Staircase
 - Fixed at top
 - Free to move at halflanding or bottom

Retrived from http://www.argusfire.co.nz on 26/02/2017

- Building Components
 - Sprinklers
 - Input from mechanical engineers?
 - Elevator
 - Otis lift

(http://www.otis.com/site/nz/)

- US fragility functions should be applicable
- Heavy plant
 - Air conditioning units
 - Electrical control panels fixed to walls
 - Server rooms

Retrived from <u>www.airtech.co.nz</u> on 26/02/2017

- Building Components
 - Partitions: mainly GIB
 - Example of supplier RONDO®
 - GIB guidelines
 - Ceilings
 - Example of supplier RONDO®
 - Input from Rajesh/Atefeh?

Retrieved from www.gib.co.nz on 26/02/2017

Retrieved from <u>www.cbsgroup.co.nz</u> on 26/02/2017

- "Typical" layout
 - Collaborators
 - Architects
 - Engineers
 - Building plans
 - Modern buildings (i.e. constructed or refurbished after 2004)
 - Commercial building plans obtained from City Councils
 - Flagship 3 for residential buildings?

University of Canterbury Biological Sciences (New Part) – HVAC details

<u>Christchurch City Council Building (53 Hereford Street) – Level 6 details</u>

- "Typical" layout
 - Findings will be used to propose several sample building layouts

Seismic loss assessment steps
 – PEER PBEE framework (Porter 2003, Deierlein 2004)

- Step 1: Use site-specific ground motions (Flagship 1?)
- Step 2: Design and analyse buildings based on proposed geometry and layout (i.e. floor mass)

• Step 3: damage analysis

- Step 4: decision analysis
 - Direct damage-repair costs: component repairs, demolition, site clean-up
 - Indirect costs: downtime, injuries/fatalities
 - Direct damage-repair
 costs estimated based
 on:
 - Repair methods
 - Material costs
 - Labour hours and availability

×/?/✓ indicates the immediate availability and quality of data for NZ-specific usage (from poor to great) based on subjectivity

Building component	Fragility	Consequence
Structural beam/column/walls	✓	?
Floor slabs	\checkmark	?
Stairs	×/?	?
Façade	?	?
Partitions	×/?	?
Ceiling	\checkmark	\checkmark
Heavy Plant	×/?	?
Sprinklers	×/?	?
Elevators	\checkmark	\checkmark