

Initiation of simulation-based PSHA (Cybershake) for the Canterbury region

University of Canterbury

Karim Tarbali and Brendon Bradley

Motivation — capabilities of simulations

 Validation of simulated ground motions for past events demonstrates the capabilities of simulations for seismic hazard assessment

Motivation — shortcomings of the empirical models

Explicit consideration of

- Directivity effects
- Basin generated waves
- Nonlinear site effects
- Hypocenter location
- Stress drop
- Slip heterogeneity
- Rupture velocity

SCEC cybershake — First attempt

- Region: Southern California
- Earthquake rupture forecast: UCERF 2.0
- Simulation approach: Graves and Pitarka (2010)

Key aspects:

- Reciprocity
- No local site effects
- No high frequency

Data and CPU requirements for the CyberShake computational components, per site of interest

Component	Data	CPU hours		
Mesh generation	15 GB	150		
SGT simulation	40 GB	10,000		
SGT extraction	680 GB	250		
Seismogram synthesis	10 GB	6,000		
PSHA calculation	90 MB	100		
Total	755 GB	17,000		

 ~7000 fault ruptures (UCERF 2)
~60 realizations per rupture multiple hypocenter locations, and pseudo-dynamic rupture descriptions
~440,000 rupture variations

 ~7000 fault ruptures (UCERF 2)
~60 realizations per rupture multiple hypocenter locations, and pseudo-dynamic rupture descriptions
~440,000 rupture variations **3D** velocity structure, e.g. CVM-S4, CVM-Harvard

 ~7000 fault ruptures (UCERF 2)
~60 realizations per rupture multiple hypocenter locations, and pseudo-dynamic rupture descriptions
~440,000 rupture variations **3D** velocity structure, e.g. CVM-S4, CVM-Harvard Seismogram synthesis for 235 sites using reciprocity, and stochastic methods (EXSIM) First attempt:

- Region: Canterbury
- Crustal model: NZVM v1.64 (Thomson et al. 2017)
- Earthquake rupture forecast: Stirling et al (2012)
- Simulation approach: Graves and Pitarka (2010, 2015)

Aspects different compared to the first SCEC Cybershake

- Forward simulation, i.e., no reciprocity
- Local site effects, i.e., empirical and/or simulationbased site response
- Broad band simulation
- Utilizing empirical PSHA to identify dominant scenarios

New Zealand Cybershake – Aspects

- Transition freq = 0.25Hz; Minimum Vs=500m/s; grid spacing=0.4km
- Slip distribution: 5 realizations
- Hypocenter location: every 20 km along the strike direction; and one row of hypocenter along the dip directions
- Empirical ground motion prediction used for (i) background seismicity; and (ii) fault-based seismic sources which provide a small contribution to the hazard
- Different computational domains used for each simulation based on rupture magnitude; integration of all plausible ruptures in PSHA calculation occurs through the use of a colocated grid of surface stations for storing simulation outputs

New Zealand Cybershake – Aspects

~500 characteristic faults

New Zealand Cybershake – Aspects

 Using non-uniform grid as a function of ⁻⁴ population density and soil shear wave ⁻⁴ velocity for storing simulation results

9

Canterbury region – Dominan scenarios

Empirical PSHA: Ground motion model: Bradley (2013) Earthquake rupture forecast: Stirling et al (2012)

Canterbury region – Dominan scenarios

Computational effort: ~ 50,000 core hours

		📄 СНСН_	_Deagg_PGV_10in50yr	rs.txt ≎					
1	Source	e# % Cont	ribution TotExc	eedRate Sour	ceName	DistRup	DistX	DistSeis	s DistJB
2	00001	7 15.60	0.016568292	AlpineF2K	134.12	134.30	134.12	133.57	
3	00033	5 07.44	0.007904454	Port2GreyS	44.21	-44.21	44.31	44.21	
4	00002	5 04.28	0.0045436528	Ashley	31.05	-30.91	36.08	31.05	
5	00032	4 03.30	0.0035086423	Pegasus1nw	21,66	18.87	21,66	17.69	
6	00546	0 02.99	0.0031732747	NSHMP Point	Source	12.53	07.97	11.01	04.61
7	00001	8 02.83	0.003000976	AlpineK2T	120.70	127.05	120.70	120.09	
8	00012	6 02.65	0.0028171192	HopeConway	106.17	-97.42	106.86	106.17	
9	00546	1 02.13	0.0022597075	NSHMP Point	Source	13.80	09.62	11.80	06.26
10	00545	9 01.71	0.0018115453	NSHMP Point	Source	17.85	14.90	15.28	11.55
11	00033	6 01.68	0.0017879123	Port2GrevL	44.21	-44.21	44.31	44.21	
12	00039	0 01.60	0.0016970133	Springbank	28.	31 –28	.29 30.3	33 28.2	29
13	00012	7 01.56	0.001658803	HopeConway0S	106	.43 -96	42 107	.11 106	43
14	00552	4 01.55	0.0016496767	NSHMP Point	Source	15.20	11.45	12.87	08.09
15	00014	5 01.45	0.0015368208	JorKekNeed	159.20	-36.54	159.59	159.20	
16	00015	9 01.43	0.0015149664	Kelly 109.	66 -10	5.61 109	.70 109	.66	
17	00539	6 01.26	0.001342691	NSHMP Point	Source	20.47	18.33	18.01	14.98
18	00007	4 01.25	0.0013298484	Cust 32.9	8 -32	.50 34.9	99 32.9	96	11150
19	00552	5 01.15	0.0012239655	NSHMP Point	Source	16.00	12.49	13.54	09.13
20	00016	9 01.08	0.0011507465	LeesV 45.8	3 54.4	42 45.8	83 44.	16	
21	00017	4 01.03	0.0010971716	Lowry 64.7	9 55.9	99 64.	79 63.0	62	
22	00539	5 01.02	0.0010865381	NSHMP Point	Source	23.08	21.70	20.89	18.35
23	00552	3 01.02	0.0010861646	NSHMP Point	Source	19.20	16.68	16.66	13.32
24	00539	7 01.00	0.0010625711	NSHMP Point	Source	20.92	18,92	18.50	15.57
25	01247	4 00.98	0.0010426964	NSHMP Point	Source	12.53	-08.81	30.35	04.61
26	01247	5 00.87	9.2503073E-4	NSHMP Point	Source	13.80	-07.16	30.65	06.26
27	00013	2 00.84	8.880124E-4	Hororata	37.80	-25.10	39.54	37.80	
28	00545	8 00.83	8.8511454E-4	NSHMP Point	Source	23.91	22.73	21.81	19.38
29	00028	5 00.81	8.5746974E-4	Omihi 49.1	1 35.8	83 49.3	11 47.	55	
30	00546	2 00.75	7.976643E-4	NSHMP Point	Source	19.48	17.04	16.95	13.68
31	00025	00.73	7.792569E-4	NorthCant1	32.66	34.02	32.66	29.14	
32	00007	2 00.73	7.783802E-4	ClarenceNE	126.51	-106.64	127.66	126.51	
33	00015	2 00.71	7.509002E-4	KaiwaraS	56.74	57.43	56.74	55.39	
34	00012	5 00.69	7.3753716E-4	Hope1888	104.53	-104.53	105.29	104.53	
35	00539	4 00.65	6.897206E-4	NSHMP Point	Source	27.84	27.42	26.06	24.07
36	00034	7 00.57	6.006092E-4	Rakaia 41.5	2 –21	.43 42.0	68 41.	52	
37	00039	1 00.56	5.95308E-4	Springfield	55.85	-45.18	57.92	55.85	
38	00552	2 00.54	5.701563E-4	NSHMP Point	Source	24.80	23.83	22.79	20.47
39	00539	B 00.53	5.6426116E-4	NSHMP Point	Source	24.22	23.12	22.15	19.76
40	01253	6 00.52	5.557121E-4	NSHMP Point	Source	15.20	-05.33	31.07	08.09
41	00012	B 00.52	5.498353E-4	HopeCW 105.	05 -10	5.05 105	.82 105	.05	
42	01253	7 00.51	5.4362154E-4	NSHMP Point	Source	16.00	-04.29	31.36	09.13
43	00552	6 00.47	5.0422695E-4	NSHMP Point	Source	20.65	18.56	18.20	15.20
44	01247	6 00.44	4.698161E-4	NSHMP Point	Source	19.48	00.26	32.97	13.68
45	01247	3 00.43	4.583456E-4	NSHMP Point	Source	17.85	-01.88	32.15	11.55

Time Line

- Aug 2017: Simulations for 50 sources considered
- Oct 2017: Cybershake PSHA results for Canterbury based on f=0.25Hz transition frequency

Time Line

- Aug 2017: Simulations for 50 sources considered
- Oct 2017: Cybershake PSHA results for Canterbury based on f=0.25Hz transition frequency
- Dec 2017: Cybershake PSHA results for South Island based on f=0.25Hz
- ~ Jan 2018: New NESI HPC resources

Time Line

- Aug 2017: Simulations for 50 sources considered
- Oct 2017: Cybershake PSHA results for Canterbury based on f=0.25Hz transition frequency
- Dec 2017: Cybershake PSHA results for South Island based on f=0.25Hz
- ~ Jan 2018: New NESI HPC resources
- Feb 2018: Cybershake PSHA results for Canterbury based on f=0.5Hz
- March 2018: Cybershake PSHA results for NZ based on f=0.25Hz
- June 2018: Cybershake PSHA results for NZ based on f=0.5Hz

Thanks for your attention

Discussion ...