

QuakeCoRE GMSV research coordination and current priorities

SCEC GMSV workshop 2016

Brendon Bradley

WEB: www.quakecore.nz WIKI: <u>https://wiki.canterbury.ac.nz/display/QuakeCore/</u>

QuakeCoRE Flagship Programmes

Distributed infrastructure (with RNC) Leader: L. Wotherspoon Deputy: R. Fairclough

FP1: Spectrum of research

Thrust Areas and 2016 projects

 Simulation methods: Development/refinement of ground motion simulation methods that enable the generation of acceleration time series for the seismic response analysis of infrastructure (including kinematic 'rupture generators').

#16002(Somerville) Sim Validation of two historical NZ Subduction Eqs

2. Velocity model development: Development of 'velocity models' of the earth's crust in new regions of NZ, or improve those in existing regions; such models should provide resolution at the length scales necessary for broadband ground motion simulations

#16027(Wotherspoon) Site Characterization Nelson/Tasman Region #16030(Bradley/Lee) 3D Tomography to improve Canterbury Vel Model

- 3. Nonlinear site and topographic response: Develop, validate, and apply models for nonlinear near-surface site and topographic response for use in conjunction with GM simulation methods.
 #16030(Bradley/Jeong) Topographic simulation Port Hills, Christchurch
- 4. Application for major NZ EQ scenarios: Utilize ground motion simulations to forecast the

severity of ground shaking over spatially-distributed regions in future major NZ earthquakes. #FP1Postdoc(Nazer) Sim Porters Pass fault rupture

- **5. Uncertainties and PSHA:** Examination of modelling uncertainties in ground motion simulation methods and utilization for probabilistic seismic hazard analysis
- #16006(Stirling) Sim Validation Clyde fault using Fragile Geologic Features #16030(Bradley/Razafindrakoto) Non-ergodic analysis Canterbury simulations
- 6. Use of simulations in earthquake engineering analyses: Explore the role of simulated ground motions for use in seismic response analysis of engineering infrastructure, including comparisons with as-recorded ground motions and development of procedures for simulated ground motions in infrastructure seismic design guidelines.

#16035(Pettinga) Guidelines for utilizations of GM sim in eng practice #16057(Luco) Coordination of QuakeCoRE and SCEC GMSV efforts

Ground motion sim validation

Razafindrakoto, Lee et al.

Validation against 10 major events in the Canterbury EQ Sequence

Validation against small-tomoderate (Mw3.0-4.5) EQs

QuakeCoRE

Result: Simulations as good as empirical models at short periods, and better at long periods

Validation of Strong Ground Motion Simulations of two Historical NZ Subduction Zone Earthquakes on the SCEC BBP

Somerville et al.

1. Simulation of the Tohoku M9.0 Event in BBP

2. Validation of Strong Ground Motion Simulations of the Napier 1931 event

- 2. 1931 Napier: GNS fault geometry: imbricate reverse fault in accretionary prism, depth 20 km
- Use the Geonet hypocenter and magnitude
- Estimate MMI from simulations and compare with the observed values from Dowrick (1990)
- 3. Pending
- Validate strong ground motion simulations for the 2009 Fiordland earthquake

Poster #290

45°S

Validation of ground motion simulations using Precariously Balanced Rocks: Bowie et al.

A 3D seismic velocity model of Canterbury Lee et al.

- First quantitative basin model of region integrating multi-disciplinary datasets
- Integral for accurate GM simulation at frequencies of engineering interest

OuakeCoRE Wotherspoon et al. NZ Centre for Earthquake Resilience 171°30' 172°00' 172°30' 172° 174 175 176 173 178 167° 168° 169° 170° 171° 172° 173° 174° 166° -34 -40 -40 Legend Blenheim Legend Under development Under development Planned for 2017/18 -35 -35 Planned for 2017/18 -41 Heathcote -43°30 Nelson / Tasman -36 -36 -42 42 West Coas -37 -37 -43 -43 auranga -38 -38 -44 -44 Canterbury Strong motion stations Active + Passive Arrays (2014) -39 -39 + H/V (2014) -45 -45 Mackenzie 171°30' 172°00' 172°30' Dunedin -40 -40 -46° -46 171°30 172°00' 172'30' Southland -41 -41 -47 Water wells

166° 167° 168° 169° 170° 171° 172° 173° 174°

QuakeCoRE investigation regions

-42

172° 173° 174° 175° 176° 177° 178° 179'

Canterbury: Detailed basin velocity model Auckland: CBD waterfront T_o model and material V_s **Tauranga:** Initial basin T_o characterisation and material V_s

Outputs feed into: Improved site subsoil classification, dynamic site metrics (e.g. T_0 , V_{S30}), and velocity models for GM simulation

173°00'

-43°30'

/allev

Geotechnical & geophysical characterization of NZ Regions:

Poster #285,#296

Future large magnitude earthquakes

Nazer, Bae et al.

Mw7.2 Porters Pass Earthquakes

Mw8 Alpine Fault Earthquakes

OuakeCoRE

NZ Centre for Earthquake Resilien

Poster #350

GMSV computational workflow

QuakeCoRE

Bae et al.

Real-time ground motion simulation Strategic QuakeCoRE/NeSI/GeoNet partnership

Compute Rupture, Velocity model and approximate finite fault Start GM simulation workflow Simulation vs. Observation comparison

QuakeCoRE GMSV research coordination and current priorities

SCEC GMSV workshop 2016

Brendon Bradley

WEB: www.quakecore.nz WIKI: <u>https://wiki.canterbury.ac.nz/display/QuakeCore/</u>

