Liquefaction Triggering & Consequence for Low-Plasticity Silty Soils

Research Team:

Misko Cubrinovski (UC), Jonathan Bray (UCB), Mark Stringer (UC), Christine Beyzaei (UCB), Mike Jacka (T+T), Michael Riemer (UCB), Frederick Wentz (W-P), Sjoerd van Ballegooy (T+T), & Sarah Bastin (UC)

Research Partners include: Ken Stokoe (UT), Brady Cox (UT), Russell Green (VT), Tom O'Rourke (Cornell U.), Nicole van de Weerd (UC), Iain Haycock (McMillan Drilling), Russell Sherwin (Pro-Drill), & Nick Traylen (EAG)

Overview

Liquefaction Field Observations vs. Triggering Predictions

Research Goals

 Understand the discrepancy between state-of-practice triggering procedures and post-earthquake observations

- Sample and test silty soils in the laboratory to assess their seismic response and resistance
- Develop "non-liquefaction" case histories for integration in the global dataset
- Provide additional guidance on evaluating the seismic response of fine-grained soils for practicing engineers

Barrington Park vs. Riccarton Road

Liquefaction Assessment Comparison

Laboratory data vs. state-of-practice estimates and field observations

Riccarton Road Site

CRR_{TX,field} ~ 0.19

CRR_{B&I} ~ 0.16

 $CSR_{B\&I} \sim 0.38$

Boulanger & Idriss (2015) method selected for comparison

Other reasons for "over-prediction"?

- Groundwater table fluctuation & "clayey crust"
- Depositional environment (e.g, swamps)
- Highly stratified subsurface profile
- At-depth suppression of ejecta movement
- Angular particles/borderline soil types
- Inherent conservatism in analysis approach

Combination of all the above?

Scale of the problem \rightarrow macro-scale system response as opposed to element/specimen/particle level response

Going Forward

- Examination of other factors contributing to absence of liquefaction / observations at the ground surface
- Effective stress analysis
- Reconstituted specimen testing
- Site-specific and regional comparisons
 - Including clean sand sites
- Evaluation using larger dataset
 - Alternative FC correlations, Ic cut-off, and "clayey crust" thickness
- Development of a "best practices" document
- Integration of non-liquefaction case histories in global dataset (NGL)