Introd	luction
111100	lucuon

Validation of ground motion simulations in the Canterbury region

H.N.T. Razafindrakoto¹, B.A. Bradley¹, R. Lee¹, A. Nazer¹,R.W. Graves² ¹University of Canterbury ²U.S. Geological Survey

Introduction	Methodology	Simulation Result	Conclusion
Motivation			

- To ensure robustness and reliability of ground motion for engineering use
- Lack of ground motion records for distances less than 10km
- Structural analyses: need of acceleration time series

Why Canterbury?

- Canterbury earthquake sequence has provided a wealth of ground motion data
- Systematic biased: shortcomings of the empirical ground motion prediction

Motivation

Why Canterbury?

- Canterbury earthquake sequence has provided a wealth of ground motion data
- Systematic biased: shortcomings of the empirical ground motion prediction

Objective

- To analyze Canterbury events using physics-based methods
- To investigate the importance of **rupture model** in ground motion simulations

BB

HF

121

12

0.6

0.4

Frequency (Hz)

Courtesy of J. Bayless

Introduction	Methodology	Simulation Result	Conclusion
Key ingre	dients		

- Source model: generated using stochastic slip generator
- Crustal structure: 3D velocity model (Lee et al., 2016)

Methodology

Simulation Result

Conclusion

Ground shaking for the $M_w7.1$ Darfield event

Ground motion validation in Canterbury region

In	111	ŝ	а	 0	•	5	n
		0			u		

4 10⁻³

Methodology

Simulation Result

Conclusion

PGA and SA distance-decays (v1.64)

Source-to-site distance, R rup (km)

10

Conclusion

PGA and SA distance-decays (v1.64)

Conclusion

PGA and SA distance-decays (v1.64)

Spectral acceleration residuals

- Median values oscillate around zero model-bias
- Simulations reduce the long-period bias compared with the GMPE prediction

Methodology

Simulation Result

Conclusion

Source sensitivity:2011 M_w6.2 Christchurch

- Incorporate source variability: 10 rupture model realizations for M_w 6.2 Christchurch event
- Fixed fault geometry and hypocenter

n †	- 11	0	а	 \sim	۰	\sim	
		o	u		L	U	

Methodology

Simulation Result

Conclusion

Source sensitivity: 2011 M_w6.2 Christchurch

- Source effect: relatively small (about 10% total residual)
- Overall between-event residual: unbiased prediction
- Note: variability originates solely from spatial distribution of rupture model

- Presence of strong wavefront distortion for the multi-fault segment faults
- Variability of spectral acceleration residual is relatively large for stations close to the fault
- Fault segmentations are required particularly west of the fault to better match the observed ground motion records

Introduction	Methodology	Simulation Result 000●	Conclusion
Bevond	Canterbury		

- Impacts of hypocenter location and the finite-fault model.
- Potential level of ground shaking in different areas.
- Validation is done based on moderate magnitude events that occurred in the vicinity of the faults.

Introduction	Methodology	Simulation Result	Conclusion
Summary			

- This study suggests that the effect of rupture model on ground motion depends on the source size and the dimension of the source complexity.
- Ground motion simulations capture the structural complexity of sedimentary basin.
- Simulation provide equal or better predictions of the observed ground motion amplitudes compared to that of the empirical GMPE.

Implications

- Better understanding of the ground motion variability.
- Benefits in improving the seismic hazard analyses and the building code.

Methodology

Simulation Result

TE PŪTEA RANGAHAU A MARSDEN

QuakeCoRE

Thank You

Spectral matching

- Choose target spectrum
- Ground motion: based on the dominant M_w and distance that contribute to the hazard
- NZ Seismic design code (NZS1170.5:2004): [0.4*T*1, 1.3*T*1]

Ground motion validation in Canterbury region

Conclusion

Total and between-event residuals

- Between-event residuals contribute about 50% of the total residual.
- No apparent trend with the event magnitude

Methodology

Simulation Result

Conclusion

Spatial variability of residuals for 1D and 3D-structures (Feb 22)

Ground motion validation in Canterbury region

Methodology

Simulation Result

Conclusion

Spatial variability of residuals for 1D and 3D-structures (Sept 4)

Ground motion validation in Canterbury region

16/16