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Motivation

e Use of GM simulations in seismic hazard
analysis (PSHA) requires validation of their
predictive capabilities

* A critical component in hazard analysis is
representation of the complete distribution of
ground shaking (i.e. mean, stdev etc)

* Conventional GM simulation validation
approaches focus only on the mean prediction
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Conventional validation
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How much uncertainty should their be
in simulations??

The same as empirical models?
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Observations vs. simulation distribution
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Example results: 22 Feb 2011 EQ

Uncertainties resulting from 10 different stochastic rupture realizations
Hypocentre fixed, based on first-arrival solution

Fixed fault geometry (from geodetic info)
Simulations (blue) vs. observations

black)
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Simulation normalised residuals

4,000 prediction-observation pairs from 40 stations and 100 vibration periods
[T=0.01-10s]
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Simulation normalised residuals

Bias and precision as a function of vibration period
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Discussion
* This framework provides a means to explicitly validate the

predicted GM distribution from simulations (as needed for

use in PSHA)

e Results indicate that rupture realization uncertainty alone
is insufficient (adopted here, and in current CyberShake),
and more comprehensive uncertainty consideration is

required

Table 1: Source, path, and site uncertainties in ground motion simulation separated into measurable quan-
tities, constitutive modelling (including parameter determination) and overarching modelling methodology

assumptions

Term Measurable quantities Constitutive model (incl. param- Model methodology
eters)
Source  Rup geometry, Magnitude, Hypo Slip-time function, Rise time- Kinematic vs. Dynamic
location, Rup velocity (avg), corner frequency correlation,
Rake (avg) Rise time-rup velocity correla-
tion, Fault roughness
Path 3D velocity model (V,, Vi, p), Attenuation, Q,/s ~ f(V's) Anelastic vs. Inelastic
Site Shallow velocity structure, Soil Drucker-Prager, Stress-Density 1D-3D site response,

shear strength

models (+ parameters)

Total/effective-stress
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