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Verification, validation, and B
utilization documentation

Verification:

e Verification is the assessment of the accuracy of the
solution of the computational model.

* To ensure that there are no programmatic errors (i.e.
bugs) in the code that implements the methodology, and
also that the numerical methods are suitable for the
problem being considered (i.e. they converge).

* Obvious means by which to verify a computational
algorithm are via comparison with known (analytical
solutions), where not possible then against benchmark
solutions



Verification, validation, and B
utilization documentation

Validation:

e Validation is assessment of the accuracy of a
computational simulation of reality as measured using
experimental observations

* Unlike verification, which is a computer science and
mathematical modelling problem, validation is a physics
problem — does the conceptual model actually provide a
realistic representation of reality?

* Because earthquake-induced ground motions naturally
involve a multi-faceted array of physical processes then

ground motion simulation validation (GMSV) should occur
in a hierarchical fashion



Verification, validation, and B
utilization documentation

Utilization documentation:
In addition to information on V&V, there are several

additional pieces of information to provide transparency

(and potentially reproducibility), these are:
Specifics of the earthquake rupture(s)

 Computational domain (size and spatial discretization of the 3D crustal model)

 Temporal discretization

* Version number for the software algorithm, crustal model and rupture
generator. Locations/sources of archived software and data.

e Specific computational resource(s) that the simulations are performed on, the
number of compute cores that have been utilized, and the required CPU hours

to perform the simulations.



Verification, validation, and B
utilization documentation

Focus for the workshop discussion is on validation

 Simulated ground motions will never perfectly match
observations, so what is the 'acceptable’ level?

* My opinion: Performance better than empirical models
relative to observational data (i.e. better = lower bias,
higher precision)
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draft wording (outdated)

In the context of ground motion simulation, the multi-hierarchical nature of validation
can be performed in the following contexts:

L.

Validation of the ‘general’ ground motion simulation methodology against
relevant worldwide historical earthquakes (validation of the methodology in
general)

Validation of the methodology for earthquakes of a magnitude similar to that
expected from the rupture to be considered (validation of the earthquake
rupture generator)

For the particular geographical region in question, validation of the simulation
method against observations from regional earthquakes (validation of the
regional crustal model)

For the particular fault rupture considered, validation of the simulation method
for small-to-moderate magnitude earthquakes in the vicinity of the fault of
interest (validation of the regional crustal model for the specific wave
propagation paths from the source to the sites of interest)

If explicit site response analyses are utilized, then appropriate validation of the
adopted constitutive models should also have been considered (i.e. the
equivalent of points 1-4 specifically for site response).

Validation metrics by which the simulated and observed ground motions are
compared including: elastic response spectral ordinates over a broadband
period range, inelastic-to-elastic spectral displacement ratios, significant
duration, directionality of orientation-dependent spectra, and inter-period
spectral ordinate correlations (validation via metrics which provide insight
into the realism of the simulated ground motions for use in nonlinear inelastic
response history analyses).
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Case study 1: Ground motions QuakeCoRE

from SCEC Broadband Platform -
P —

 An open-source platform e B NN "?—\/__

| P
\ Generator | . l
\ / P

AL 2 -

o
s 4 ;
-
el

providing simulated ground .
motions for general 1D velocity
models

N

[ Low-Frequency \
Synthesis /'

>4

Depth (km)

N q

4 methodologies available, all of N B
. . ‘[ g3 |
which have had significant Ve \ H e
. . . 3.
validation for general regions (WonFrequency)  §1 .y
Complexity of metrics used for validation \ / !
Other IMs Complex system \\ / Time (s)
None Qualitative Response (duration, (MDOF) . )
f spectra I I PP ——
kbl - inelastic SDOF) respons \\J> E ¢ ""—'f MKHLM \ / \
. £ | Extract \
3 Generic J J J J 3 | T - | Response
= region E J \ Spectra
§ 6 Specific . . L ! T \» _,//
EE geographic NOt reglon SpECIﬁC d A é
5g ™| (caveat: does allow user-defined g Moidoe _ R<tim rime
w § s I —
2 E Specific ; 3 P .
0,? S source-to- 1D prOﬁIe) s AR / \ £
§ E site azimuths £ Verification “‘\i 2
g e ground motions for rock sites : - .
speciﬁcv Only g | \ 4/‘// E
8 a W I N
H E&’ Period (s) ‘ Period (s)

Period (s)



Case study? : Simulation of major e
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Canterbury
Situation: There are few
precedents for prediction of
ground motions in Canterbury
from a large Alpine fault
earthaquake
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Situation: There are few
precedents for prediction of
round motions in Canterbury
rom a large Alpine fault
earthquake

Q: How can we develop |
confidence that the results from
ground motion simulation are |
robust? (i.e. equal to, or better
than, the alternative of using

conventional empirical models)

A: Verification and Validation
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Case study 2: Simulation of major
Alpine fault earthquakes for
Canterbury
1. Adopt a methodology (Graves & Pitarka 2010,
2015) that has been extensively validated for multiple

earthquakes in different geographic regions using
multiple metrics [lots of work by SCEC researchers]
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NZ Centre for Earthquake Resilience

Complexity of metrics used for validation
OtherIMs  Complex system

None Qualitative ReSponse (duratio (MDOF)
waveform nelastic SDOF)

Generic ’ J J J
e region
2
2 5 Specifi
o B
28 8 ograph
<= region
5 >
'u_n :
o .2 g
=] Specific
NS urce-to-
'§ E site azimuths
c
(7] .
(G Site-

peciﬁc&




Case study 2: Simulation of major e
Alpine fault earthquakes for P R
Canterbury

2. Perform ground motion simulations using moderate-to-large
magnitude earthquakes in the specific region of interest

Ground motion simulation of 10 main events in the 2010-2011
Canterbury earthquake sequence (Bradley, Razafindrakoto et
al. 2015, 2016)
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Case study 2: Simulation of major Q
Alpine fault earthquakes for
Canterbury

3. Perform ground motion simulation for other events (small
magnitude, larger magnitude if available) which are located

outside the Canterbury basin to examine wave propagation
into the basin
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Case study 2: Simulation of major e
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Canterbury

3. Perform ground motion simulation for other events (small
magnitude, larger magnitude if available) which are located
outside the Canterbury basin to examine wave propagation
into the basin

(a) Ground motion simulation of recent events near Porters
PaSS (Nazer et al OngOIng) Complexity of metrics used for validation
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Case study 2: Simulation of major e
Alpine fault earthquakes for P R
Canterbury

3. Perform ground motion simulation for other events (small
magnitude, larger magnitude if available) which are located
outside the Canterbury basin to examine wave propagation
into the basin

(b) Ground motion simulation of many small magnitude events
(Lee et al. ongoing)

Complexity of metrics used for validation
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Case study 2: Simulation of major e
Alpine fault earthquakes for | oo
Canterbury

4. If site-specific response analysis (i.e. not simply Vs30) is
used, validation of the general methodology, as well as its
application to this specific site (e.g. lab testing, downhole array
validation, deployed SM instruments at the specific site)

HeathCOte Va”ey (JEOng Et al 2014 2016) Complexity of metrics used for validation

OtherIMs  Complex system

None Qualitative Response (duration, (MDOF)
waveform spectra inelastic SDOF) responsa=)
Generic J J J J
e region
2.0 'S
1.5} 25 Specific
. 1.0k Y _;g _E geograp.hic J J J
<= 05 = sre Mt et vt A "’EE reglon
.'6 0.0 NS o Vol o -~ - b) Empirical dllgbg ifi
3 _05| LA R AP (b) Empirical model ¢ = Specific J J J
< 5ol :.: E source-to-
7| == Median ‘= -z site azimuths
=1.5F - . Median + std. ; g
?207 10! 10° 00 7 e ¢ Spesc'itf?; ‘/ ‘/
Vibration period, 7'[s] (c) Ground motion v

simulation with 3D

(a) 2D nonlinear site response analyses velocity model



Case study 2: Simulation of major e
Alpine fault earthquakes for Q| ocerecrsanarene
Canterbury |

Summary of validation
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