

Guidance on the utilization of earthquake-induced ground motion simulations in engineering practice

Simulation basics

The need for GM simulations

- Lack of as-recorded ground motions
 - Few large Mw
 - Few small Rrup
- Implications:
 - Empirical models poorly constrained for such scenarios
 - Difficult to find appropriate time series to use in dynamic analyses

Advantage of physics-based site specific simulations

- Enables modelling of complex rupture, and regionaland site-specific wave propagation and site response;
- As compared to simplified empirical models and recorded ground motions from elsewhere

RF

Key simulation considerations

• Governing wave equation

$$\rho \frac{\partial^2 u_i}{\partial t^2} = \partial_j \sigma_{ji}$$

Conservation of momentum

$$\sigma_{ij} = \lambda \delta_{ij} \partial_k u_k + \mu \left(\partial_i u_j + \partial_j u_i \right)$$
Constitutive relation (stress-strain)

Numerical solution of the wave equation

- Finite Difference (FD) approximate the derivatives using finite differences
- Finite Element (FE) approximate the solution of the PDE (using elements with basis functions)
- Spectral Element (SE) high order finite element solution using high degree polynominals as basis functions

Maximum frequency of simulation

- Discretization means that there is a limit to the maximum frequency that can be considered.
 - This is the same as how the time step in a ground motion affects the maximum (Nyquist) frequency
- In order to accurately simulate a particular frequency, N points are usually required per wavelength (N depends on the type of numerical solution and order)

Hybrid broadband simulations

- Most physics-based simulations limited to low frequency (typ *f↓max* ≤1*Hz*).
- Due to: (i) computational demands; but also inability to accurately model (ii) the 3D velocity structure; and (iii) the earthquake source at wavelengths required for high frequency simulations
- Consequently in order to simulate *broadband* ground motions (high and low frequencies) it is necessary to use different simulation methods for each (i.e. a *hybrid* simulation).

Hybrid broadband

Low-frequency (e.g., kinematic source)

GP (Graves & Pitarka, 2010)

Ingredients for physics-based ground motion simulation Key Ingredients:

Ouake<mark>CoR</mark>F

NZ Centre for Earthquake

along strike (km)

Development of 3D velocity models

Multi-disciplinary datasets at different depths and different spatial resolutions

Example: different data used in Canterbury Velocity Model

Data sets lead to development of QuakeCoRE geologic surfaces

Combine with geologic unit- QuakeCore specific constitutive models

Representation of the earthquake source

- The earthquake source rupture represents the 'initial disturbance' in the wave propagation problem.
- Need to define:
 - Geometry
 - Kinematics
 - Dynamics
- Can represent source in two ways using so-called 'Kinematic' and 'Dynamic' approaches

Kinematic source representation

- Prescribe:
- (i) Slip amplitude and direction (rake)
- (ii) rupture initiation time
- (iii) rise time over which rupture occurs
- (iv) variation of slip with time (slip function)

Examples of ground motion simulation

• A full rupture of the Sth San Andreas Fault

Empirical

Physics-based

The 1989 Loma Prieta Eq (Graves and Pitarka, 2010)

Qualitative validation based on waveforms between prediction and observations

Quantitative validation with intensity measures

Alpine fault rupture

Observed vs Simulated velocity (4 Sept 2010)

Velocity (NS direction)

Spectral accelerations vs Distance (4 Sept 2010)

SA, period T=3s SA, period T=10s 10^{-1} 10⁰ Large variation in obs and sim **Basin-edge: CBD** Spectral acceleration, SA(10s) (g) 01 10 Spectral acceleration, SA(3s) (g) 01 _1 Not basin edge Obs Obs Sim Sim GMPE GMPE 10 Source-to-site distance, R _{rup} (km) 10 10⁰ 10² Source-to-site distance, R _{rup} (km) 10⁰ 10^{2}

www.quakecore.nz

