Robust and efficient estimation of structural collapse capacity using the central difference time integration scheme

> Reagan Chandramohan Jack Baker Greg Deierlein

> > 19th October, 2016

PFFR

- Estimation of structural collapse capacity requires the numerical simulation of structural response under a number of intense ground motions that produce large inelastic deformations
- The numerical simulations commonly use implicit time integration schemes
 - > They often fail to converge, especially when using long duration ground motions
 - Lots of execution time is spent in attempts to force convergence, which are not always successful
- The explicit central difference time integration scheme is proposed as a robust and efficient alternative

Structural collapse capacity

- Capacity of a structure to resist collapse under earthquake ground motion
- Defined by a *collapse fragility curve*, which quantifies the probability of collapse as a function of the ground motion intensity
- Gives the *mean annual frequency of collapse* when integrated with the seismic hazard curve
- Used in seismic design code calibration and loss assessment

Primary influencing factors

Solve the right problem

- Accuracy of structural model
- Uncertainty in model parameters

- Ground motion characteristics
 - Hazard-consistent ground motions with appropriate response spectral shapes and
 - Uncertainty in characteristics of anticipated ground motions

Reagan Chandramohan

Т

Secondary influencing factors Solve the problem right

$\boldsymbol{M}\boldsymbol{\ddot{u}}(t) + \boldsymbol{C}\boldsymbol{\dot{u}}(t) + \boldsymbol{f}(t) = -\boldsymbol{M}\boldsymbol{\iota}\boldsymbol{\ddot{u}}_{\boldsymbol{g}}(t)$

- Numerical time integration scheme used
 - implicit schemes (e.g. Newmark average acceleration, HHT-α) often fail to converge, especially when using complex structural models and long duration ground motions
 - explicit schemes (e.g. central difference) are more robust, and preferred in analyses involving large nonlinear deformations, like blast and crash simulations; structural collapse simulations fall in the same category
- Criteria employed to detect structural collapse
- Analysis software (e.g. OpenSees, Perform 3D) and linear algebra solver (e.g. LAPACK, MUMPS, PETSc) used
 - treatment of ill-conditioned matrices at large nonlinear deformations
- Architecture of machine used to run the analysis
 - precision of computations

Newmark average acceleration vs. Central difference

Newmark average acceleration

Central difference

Implicit scheme

$$\left(\frac{4}{\Delta t^2} \mathbf{M} + \frac{2}{\Delta t} \mathbf{C} \right) \mathbf{u}_{i+1} = \mathbf{p}[\mathbf{M}, \mathbf{C}, \Delta t, \mathbf{u}_i, \dot{\mathbf{u}}_i, \ddot{\mathbf{u}}_i, (\ddot{\mathbf{u}}_g)_i] - \mathbf{f}_{i+1}$$

- Solves for equilibrium at end of time step
- Requires solution by iteration; convergence is not guaranteed
- If convergence fails
 - try other solution algorithms, e.g. Modified Newton-Raphson, Newton-Raphson with initial stiffness
 - try other implicit schemes with algorithmic damping
 - try reducing Δt
- These attempts are time-consuming
- If they all fail, structural collapse is declared even if collapse deformation threshold is not exceeded

Explicit scheme

$$\left(\frac{1}{\Delta t^2}\boldsymbol{M} + \frac{1}{2\Delta t}\boldsymbol{C}\right)\boldsymbol{u}_{i+1} = \boldsymbol{p}[\boldsymbol{M}, \boldsymbol{C}, \Delta t, \boldsymbol{u}_i, \boldsymbol{u}_{i-1}, (\ddot{\boldsymbol{u}}_g)_i] - \boldsymbol{f}_i$$

- Solves for equilibrium at beginning of time step
- No iteration required
- If *C* is constant (and diagonal), matrix needs to be factorized only once
- Very amenable to parallelization by domain decomposition

Newmark average acceleration vs. Central difference

Newmark average acceleration

Unconditionally stable

- Δt limited by accuracy, not stability
- Can use relatively large ∆t (~ 10⁻³ s to 10⁻² s), which is usually reduced upon encountering non-convergence
- Not easy to predict duration of analysis

Central difference

Conditionally stable

- $\Delta t \leq \frac{T_{min}}{\pi}$ for stability
- Δt used is usually relatively small (~ 10⁻⁴ s)
- *T_{min}* is usually unchanged in inelastic range
- Mass/moment of inertia must be assigned to all degrees of freedom
- Impractical to use rigid elements or penalty constraints
- Easy to predict duration of analysis (useful for parallel task scheduling)

Structural model

- 9-story steel moment frame building from SAC steel project
- 2d concentrated plastic hinge model created in OpenSees
- Plastic hinges follow Ibarra-Medina-Krawinkler bilinear hysteretic model
- Fundamental elastic modal period is 3.0 s
- Collapse capacity estimated separately using Newmark average acceleration and central difference schemes

Incremental dynamic analysis (IDA)

- Used FEMA P695 far field record set, containing 44 ground motions
- Each ground motion is progressively scaled to higher intensity levels until it causes structural collapse
- The collapse fragility curve is fit to the distribution of ground motion intensity levels at which structural collapse occurs

IDA curves bifurcate due to non-convergence

Difference in estimated collapse capacity > 10% for **12** out of 44 ground motions

Reagan Chandramohan

Possible outcomes of *full* Newton-Raphson algorithm

IDA curves are similar when analyses converge

Difference in estimated collapse capacity < 1 % for **29** out of 44 ground motions

Reagan Chandramohan

Central difference scheme

Comparison of representative time histories

- Time histories are practically identical until the point of non-convergence, if any
- Could use implicit scheme until point of non-convergence and explicit scheme thereafter, but currently facing implementation issues in OpenSees

 Small differences are sometimes observed at large deformations (peak story drift ratio > 0.06)

Reagan Chandramohan

Effect on estimated collapse fragility curves

- Median collapse capacity is under-estimated by 10 % when using the Newmark average acceleration time integration scheme
- Similar effect expected on collapse fragility curves estimated using multiple stripe analysis as well

Comparison of analysis runtimes

One analysis using one ground motion

Time integration scheme	Rayleigh damping matrix	Type of solver	Δt (s)	Analysis runtime (min)
Newmark avg. accel. low scale factor w/o convergence attempts	$\alpha M + \beta K_{current}$	Sparse	50×10^{-4}	1 .0
Newmark avg. accel. high scale factor w/ convergence attempts	$\alpha M + \beta K_{current}$	Sparse	$\leq 50 \times 10^{-4}$	20.9
Central difference	$\alpha M + \beta K_{current}$	Sparse	1.5×10^{-4}	15.9
Central difference	$\alpha M + \beta K_{initial}$	Sparse (factor once)	1.5×10^{-4}	3.3
Central difference	αΜ	Diagonal (<i>factor once</i>)	1.5×10^{-4}	2.9

- Using *K*_{initial} instead of *K*_{current} in the Rayleigh damping matrix has been shown to produce spurious damping forces
- Other option is to use a modal damping matrix, which is also constant

Reagan Chandramohan

Central difference scheme

Comparison of analysis runtimes

Entire IDA (using 160 processors and dynamic load balancing)

Time integration scheme	Rayleigh damping matrix	Type of solver	Δt (s)	IDA runtime (min)
Newmark avg. accel.	$\alpha M + \beta K_{current}$	Sparse	$\leq 50 \times 10^{-4}$	118
Central difference	$\alpha M + \beta K_{current}$	Sparse	1.5×10^{-4}	154
Central difference	$\alpha M + \beta K_{initial}$	Sparse (factor once)	1.5×10^{-4}	32
Central difference	αM	Diagonal (factor once)	1.5×10^{-4}	27

- Only 1 out of 632 total analyses conducted using the Newmark average acceleration scheme completed without any convergence errors
- 567 out of the 632 analyses completed using solution algorithms other than *full* Newton-Raphson
- 23 out of the 632 analyses completed after reducing Δt

Comparison of analysis runtimes

Entire IDA (using 160 processors and dynamic load balancing)

Time integration scheme	Rayleigh damping matrix	Type of solver	Δt (s)	IDA runtime (min)
Newmark avg. accel.	$\alpha M + \beta K_{current}$	Sparse	$\leq 50 \times 10^{-4}$	118
Central difference	$\alpha M + \beta K_{current}$	Sparse	1.5×10^{-4}	154
Central difference	$\alpha M + \beta K_{initial}$	Sparse (factor once)	1.5×10^{-4}	32
Central difference	αM	Diagonal (<i>factor once</i>)	1.5×10^{-4}	27

- Only 1 out of 632 total analyses conducted using the Newmark average acceleration scheme completed without any convergence errors
- 567 out of the 632 analyses completed using solution algorithms other than *full* Newton-Raphson
- 23 out of the 632 analyses completed after reducing Δt

Conclusion

- Computational choices influence the estimated structural collapse capacity, in addition to structural and ground motion characteristics
- The explicit central difference time integration scheme is a robust and efficient alternative to commonly used implicit time integration schemes like Newmark average acceleration
- Advantages of the central difference scheme
 - Robust: not affected by convergence errors
 - Efficient: shorter runtimes despite using a smaller Δt
 - **\star** Most efficient when using constant (and diagonal) **C** matrix
 - \star Very amenable to parallelization
- Disadvantages of the central difference scheme
 - Mass/moment of inertia must be assigned to all degrees of freedom
 - Impractical to use rigid members or penalty constraints

Thank you!

Reagan Chandramohan