

Sensitivity Analysis for Drained Triaxial Element Tests Using PDMY and ManzariDafalias Constitutive Models

Learning Curve Approach

Arman Kamalzadeh

akam553@aucklanduni.ac.nz

Date 11/04/2017

OpenSees Model

2

Single Element Testing

🔴 🥚 🔵 🖹 ctcTest.tcl (~/QuakeCoRE/Op	enSedule3_geotechni
wipe	
<pre># Confinement Stress set pConf -50.0 # Devlatoric strain set devDisp -0.2 # Permeablity set perm 1.0e-9 # Rayleigh damping parameters set damp 0.1 set omega1 0.0157 set omega2 64.123 set a1 [expr 2.0*\$damp/(\$omega1+\$omega2]</pre>	a2)]
# Create a 3D model with 4 Degrees of model BasicBuilder –ndm 3 –ndf 4	Freedom
<pre># Create nodes node 1 1.0 0.0 0.0 node 2 1.0 1.0 0.0 node 3 0.0 1.0 0.0 node 4 0.0 0.0 0.0 node 5 1.0 0.0 1.0 node 6 1.0 1.0 1.0 node 7 0.0 1.0 1.0 node 8 0.0 0.0 1.0 # Create Fixities fix 1 0 1 1 1 fix 2 0 0 1 1 fix 3 1 0 1 1 </pre>	
fix 4 1 1 1 1 fix 5 0 1 0 1 fix 6 0 0 0 1 fix 7 1 0 0 1 fix 8 1 1 0 1	

Single Element Testing

<pre># Apply confinement pressure set pNoMe [expr \$pConf / 4.0] pattern Plain 1 {Series -time {0 10000 le10} -values {0 1 1} -factor 1} { load 1 \$pNode 0.0 0.0 0.0 load 2 \$pNode \$pNode 0.0 0.0 load 3 0.0 \$pNode 0.0 0.0 load 5 \$pNode 0.0 \$pNode 0.0 load 6 \$pNode \$pNode 0.0 load 7 0.0 \$pNode \$pNode 0.0 load 8 0.0 0.0 \$pNode 0.0 load 8 0.0 0.0 \$pNode 0.0 } analyze 100 100 # Let the model rest and waves damp out analyze 10 1000 # Close drainage valves for {set x 1} {\$x<9} {incr x} { remove sp \$x 4 } analyze 5 0.1 updateMaterialStage -material 1 -stage 1 analyze 5 0.1 # Read vertical displacement of top plane set vertDisp [nodeDisp 5 3] # Apply deviatoric strain set eDisp [expr 1+\$devDisp/\$vertDisp] eval "timeSeries Path 5 -time {0 20001 20301 1e10 pattern Plain 2 5 { sp 5 3 \$vertDisp sp 6 3 \$vertDisp sp 8 3 \$vertDisp } }</pre>	😑 🥚 🌒 🖹 ctcTest.tcl (~/QuakeCoRE/OpenSedule3_geotechnicalExam	oles) - VIM
<pre># Close drainage valves for {set x 1} {\$x<9} {incr x} { remove sp \$x 4 } analyze 5 0.1 updateMaterialStage -material 1 -stage 1 analyze 5 0.1 # Read vertical displacement of top plane set vertDisp [nodeDisp 5 3] # Apply deviatoric strain set eDisp [expr 1+\$devDisp/\$vertDisp] eval "timeSeries Path 5 -time {0 20001 20301 1e10 pattern Plain 2 5 { sp 5 3 \$vertDisp sp 6 3 \$vertDisp sp 7 3 \$vertDisp sp 8 3 \$vertDisp sp 6 3 \$vertDisp sp 8 3 \$vertDisp sp 8 3 \$vertDisp sp 8 3 \$vertDisp</pre>	<pre># Apply confinement pressure set pNole [expr \$pConf / 4.0] pattern Plain 1 {Series -time {0 10000 1e10} -values {0 1 1} -fac load 1 \$pNode 0.0 0.0 0.0 load 2 \$pNode \$pNode 0.0 0.0 load 3 0.0 \$pNode 0.0 0.0 load 5 \$pNode 0.0 \$pNode 0.0 load 6 \$pNode \$pNode 0.0 load 7 0.0 \$pNode \$pNode 0.0 load 8 0.0 0.0 \$pNode 0.0 } analyze 100 100 # Let the model rest and waves damp out analyze 10 1000</pre>	tor 1} {
	<pre># Close drainage valves for {set x 1} {\$x<9} {incr x} { remove sp \$x 4 } analyze 5 0.1 updateMaterialStage -material 1 -stage 1 analyze 5 0.1 # Read vertical displacement of top plane set vertDisp [nodeDisp 5 3] # Apply deviatoric strain set eDisp [expr 1+\$devDisp/\$vertDisp] eval "timeSeries Path 5 -time {0 20001 20301 1e10 pattern Plain 2 5 { sp 5 3 \$vertDisp sp 6 3 \$vertDisp sp 7 3 \$vertDisp sp 8 3 \$vertDisp } }</pre>	

Credits to Chris McGann

https://wiki.canterbury.ac.nz/display/QuakeCore/OpenSees+Training+Workshops+-+2017

Single Element Testing

🔴 😑 🔵 🖹 ctcTest.tcl (~/Qua	akeCoRE/OpenSedule3_geotechni
wipe	
<pre># Confinement Stress set pConf -50.0 # Devlatoric strain set devDisp -0.2 # Permeablity set perm 1.0e-9 # Rayleigh damping paramete set damp 0.1 set omegal 0.0157 set omega2 64.123 set al [expr 2.0*\$damp/(\$om set a0 [expr \$al*\$omega1*\$o </pre>	ega1+\$omega2)] mega2]
# Create a 3D model with 4 model BasicBuilder -ndm 3 -	Degrees of Freedom ndf 4
<pre># Create nodes node 1 1.0 0.0 0.0 node 2 1.0 1.0 0.0 node 3 0.0 1.0 0.0 node 4 0.0 0.0 0.0 node 5 1.0 0.0 1.0 node 6 1.0 1.0 1.0 node 7 0.0 1.0 1.0 node 8 0.0 0.0 1.0 # Create Fixities fix 1 0 1 1 fix 2 0 0 1 1 fix 3 1 0 1 1 fix 4 1 1 1</pre>	
fix 5 0 1 1 fix 6 0 0 1 fix 7 1 0 1 fix 8 1 1 0	

Single Element Testing

🔴 😑 🔮 🔮 ctcTest.tcl (~/QuakeCoRE/OpenSedule	3_geotechnicalExamples) - VIM
<pre># Apply confinement pressure set pNoile [expr \$pConf / 4.0] pattern Plain 1 {Series -time {0 10000 1e10} -v load 1 \$pNode 0.0 0.0 0.0 load 2 \$pNode \$pNode 0.0 0.0 load 3 0.0 \$pNode 0.0 0.0 load 5 \$pNode 0.0 \$pNode 0.0 load 6 \$pNode \$pNode 0.0 load 7 0.0 \$pNode \$pNode 0.0 load 8 0.0 0.0 \$pNode 0.0 } analyze 100 100 # Let the model rest and waves damp out analyze 10 1000</pre>	values {0 1 1} -factor 1} {
<pre># Close close valves for {set remove set analyze vil # Read vertical displacement of top plane set vertDisp [nodeDisp 5 3] # Apply deviatoric strain set eDisp [expr 1+\$devDisp/\$vertDisp] eval "timeSerice Path 5 - time {0 20001 20301 1e} </pre>	-10
<pre>pattern Plain 2 5 { sp 5 3 \$vertDisp sp 6 3 \$vertDisp sp 7 3 \$vertDisp sp 8 3 \$vertDisp }</pre>	

Credits to Chris McGann

https://wiki.canterbury.ac.nz/display/QuakeCore/OpenSees+Training+Workshops+-+2017

Variation of PDMY Material Parameters

• Deviatoric Stress $(q=\sigma_1-\sigma_3)$

• Mobilized Shear Angle

• Volumetric Change (Strain)

Variation of PDMY Material Parameters

	Loose	Medium	Dense
Deviatoric Displacement (m)	0.2~0.4	0.2~0.4	0.2~0.4
Density (tonne/m ³)	1.7	1.95	2.1
Shear Modulus G _o (MPa)	55	87.5	130
Shear Modulus K _o (MPa)	150	250	390
Poisson Ratio v	0.34	0.343	0.35
Young Modulus E _o (MPa)	147.4	235	351
Friction Angle	29	35	40
Phase Transformation Angle	29	27	27
Contraction Constant	0.21	0.06	0.03
Dilatancy Constant 1	0	0.5	0.8
Dilatancy Constant 2	0	2.5	5
Liquefaction Factor 1 (KPa)	10	7.5	0
Liquefaction Factor 2	0	0.0065	0
Liquefaction Factor 3	0	1.0	0
Initial Void Ratio (e)	0.85	0.625	0.45

Confining Pressure	Values (KPa)
P _{c1}	50
P _{c2}	1000
P _{c3}	4000

Loose PDMY Phase Transformation Angle

Phase Transformation Angle (Degrees)
5
10
15
20
25
30

50 KPa

Deviatoric Stress (KPa)

Loose PDMY Phase Transformation Angle

Medium PDMY Phase Transformation Angle

Phase Transformation Angle (Degrees)
5
10
15
20
25
30
35

50 KPa

Axial Strain

qPT5

qPT10 qPT15

qPT20

qPT25

qPT30

qPT35

Deviatoric Stress (KPa)

Medium PDMY Phase Transformation Angle

50 KPa

Medium PDMY Phase Transformation Angle

Dense PDMY Phase Transformation Angle

Phase Transformation Angle (Degrees)
5
10
15
20
25
30
35
40

50 KPa

4000 KPa

Dense PDMY Phase Transformation Angle

50 KPa

14

Loose PDMY Contraction Constant

Contraction Constant
C ₁
0
0.21
0.4
0.6
0.8
1.0
1.5
2.0

50 KPa

Loose PDMY Contraction Constant

4000 KPa

1000 KPa

.....

Medium PDMY Contraction Constant

Contraction Constant
С ₁
0
0.05
0.1
0.2
0.4
0.8
1.6
8

50 KPa

Medium PDMY Contraction Constant

Dense PDMY Contraction Constant

Contraction Constant
C ₁
0
0.05
0.1
0.2
0.4
0.8
1.6
8

50 KPa

Dense PDMY Contraction Constant

50 KPa

Loose PDMY Dilatancy1 Constant

Dilatancy1 Constant
d ₁
0
0.1
0.2
0.4
0.8
1.6
3.2
6.4

Loose PDMY Dilatancy1 Constant

50 KPa

Medium PDMY Dilatancy1 Constant

Dilatancy1 Constant
d ₁
0
0.25
0.5
0.75
1.0
1.5
2.0
3.0

50 KPa

Medium PDMY Dilatancy1 Constant

50 KPa

Dense PDMY Dilatancy1 Constant

Dilatancy1 Constant
d ₁
0
0.25
0.5
0.75
1.0
1.5
2.0
3.0

Dense PDMY Dilatancy1 Constant

4000 KPa

1000 KPa

Loose PDMY Dilatancy2 Constant

Dilatancy2 Constant
d ₂
0
2.0
4.0
8.0
12.0
16.0
20.0
30.0

Loose PDMY Dilatancy2 Constant

50 KPa 1000 KPa 4000 KPa φDt0 φDt0 φDt0 φDt2 φDt2 φDt2 Angle Mobilised Shear Angle Mobilised Shear Angle φDt4 2 φDt4 20 φDt4 φDt8 φDt8 φDt8 Mobilised Shear φDt12 φDt12 φDt12 φDt16 φDt16 φDt16 φDt20 φDt30 φDt20 φDt20 φDt30 φDt30 - 0.04 - 0.05 - 0.08 - 0.03 -0.02- 0.01 -0.04- 0.03 - 0.02 - 0.01 - 0.06 -0.04- 0.02 0 DVDt0.DVDt2.DVDt4.DVDt8.DVDt12.DVDt16.DVDt20.DVDt30 DVDt0.DVDt2.DVDt4.DVDt8.DVDt12.DVDt16.DVDt20.DVDt30 DVDt0, DVDt2, DVDt4, DVDt8, DVDt12, DVDt16, DVDt20, DVDt30 Volumetric Change Volumetric Change Volumetric Change DVDt0 - 0.01 DVDt0 DVDt0 - 0.0 DVDt2 DVDt2 DVDt2 DVDt4 DVDt8 DVDt8 DVDt12_0.02 DVDt16 DVDt16 Change DVDt4 S0 DVDt4 DVDt8 - 0.02 DVDt8 <u>.</u> DVDt12 DVDt12_0.0 Volumeti DVDt16 DVDt16 olu DVDt20^{-0.0} DVDt20 ~ DVDt30 DVDt30 DVDt30 -0.03- 0.0 - 0.05 - 0.08 -0.040.1 0.2 0.3 0.1 0.2 0.3 0.10.2 0.3 ezDt0, ezDt2, ezDt4, ezDt8, ezDt12, ezDt16, ezDt20, ezDt30 ezDt0, ezDt2, ezDt4, ezDt8, ezDt12, ezDt16, ezDt20, ezDt30 ezDt0, ezDt2, ezDt4, ezDt8, ezDt12, ezDt16, ezDt20, ezDt30 Axial Strain Axial Strain Axial Strain

Medium PDMY Dilatancy2 Constant

Dilatancy2 Constant
d ₂
0
1.0
2.5
5.0
7.5
10.0
15.0
20.0

Medium PDMY Dilatancy2 Constant

50 KPa

Dense PDMY Dilatancy2 Constant

Dilatancy2 Constant
d ₂
0
1.5
3.0
4.5
6.0
8.0
10.0
15.0

50 KPa

Dense PDMY Dilatancy2 Constant

50 KPa

PDMY Conclusion

- Because of contraction of confining phase, phase transformation angle has more effect on samples that tends to dilate in the next phase (medium and dense).
- Contraction constant has more effect on the samples has more tendency to contract. This effect is more on volumetric change.
- Dilatancy1 Constant (d₁) cause the medium and dense sand to be more dilatant. There is no effect on loose sand. The influence of this constant on volumetric change is recognizable from initial steps of applied deviatoric strains and the behavior is different at low strains.
- Dilatancy2 Constant (d₂) cause the medium and dense sand to be more dilatant. There is no effect on loose sand. The volumetric change behavior starts the same but the rate of volumetric change vs axial strain graph differs.
- There were no or negligible effects on deviatoric stress (q) for variation of these four parameters.
- The effect of these four parameters is not at the ultimate magnitude of mobilized shear angle but on the corresponding volumetric change that the ultimate mobilized shear angle occurs.

	Loose	Medium	Dense
Deviatoric Displacement (m)	0.2~0.4	0.2~0.4	0.2~0.4
Density (tonne/m ³)	1.7	1.95	2.1
Shear Modulus G _o (MPa)	55	87.5	130
Shear Modulus K _o (MPa)	150	250	390
Poisson Ratio v	0.34	0.343	0.35
Young Modulus E _o (MPa)	147.4	235	351
Friction Angle	29	35	40
Phase Transformation Angle	29	27	27
Contraction Constant	0.21	0.06	0.03
Dilatancy Constant 1	0	0.5	0.8
Dilatancy Constant 2	0	2.5	5
Liquefaction Factor 1 (KPa)	10	7.5	0
Liquefaction Factor 2	0	0.0065	0
Liquefaction Factor 3	0	1.0	0
Initial Void Ratio (e)	0.85	0.625	0.45

Constant	Variable	Tayoura Sand Manzari & Dafalias (2004)	Nevada Sand Shahir et al. (2012)	Babolsar Sand Zahmatkesh & Janalizadeh (2016)
Elasticity	G ₀	125.0	150.0	100.0
	ν	0.05	0.05	0.05
	М	1.25	1.14	1.45
Critical	С	0.712	0.78	0.682
critical	λ _c	0.019	0.027	0.018
state	e _o	0.934	0.83	0.781
	ξ	0.7	0.45	0.7
Plastic	h _o	7.05	9.7	50.99
Modulus	C _h	0.968	1.02	1.248
iviodulus	n ^b	1.1	2.56	1.51
Dilatancy	A ₀	0.704	0.81	0.48
	n ^d	3.5	1.05	7.51
Dilatancy-	Z _{max}	4	5	35
fabric	Cz	600	800	700
Yield Surface	m	0.01	0.02	0.01

Confining Pressure	Confining Pressure
(KPa)	(KPa)
50	1000
200	2500
400	4000
700	8000

Taylor (1948)

36

Confining Pressure Loose PDMY

Confining Pressure Medium PDMY

0.08

0.5

Confining Pressure Dense PDMY

Constant	Variable	Tayoura Sand Manzari & Dafalias (2004)	Nevada Sand Shahir et al. (2012)	Babolsar Sand Zahmatkesh & Janalizadeh (2016)
Elasticity	G ₀	125.0	150.0	100.0
	ν	0.05	0.05	0.05
	М	1.25	1.14	1.45
Critical	С	0.712	0.78	0.682
critical	λ _c	0.019	0.027	0.018
state	e _o	0.934	0.83	0.781
	ξ	0.7	0.45	0.7
Plastic	h _o	7.05	9.7	50.99
Modulus	C _h	0.968	1.02	1.248
iviodulus	n ^b	1.1	2.56	1.51
Dilatancy	A ₀	0.704	0.81	0.48
	n ^d	3.5	1.05	7.51
Dilatancy-	Z _{max}	4	5	35
fabric	Cz	600	800	700
Yield Surface	m	0.01	0.02	0.01

Confining Pressure	Confining Pressure
(KPa)	(KPa)
50	1000
200	2500
400	4000
700	8000

Confining Pressure Tayoura MD Sand e_o=0.934

Confining Pressure Nevada MD Sand e_o=0.83

Confining Pressure Babolsar MD Sand e_o=0.781

48

PDMY & Manzari-Dafalias Comparison

- PDMY: According to Lee (1965) at large axial strains for loose and dense materials the volumetric change rate decrease while this increases in PDMY material.
- PDMY: No large peak shear strength could be seen for dense materials at low confining pressures.
- MD: Although all three available ManzariDafalias materials were able to show peak shear strength at smaller confining pressures, according to Lee (1965) this peak happens in case of dense material and all three Manzari Dafalias materials have large initial void ratios which indicate the sand materials are loose.
- MD: The volumetric strain graphs seem to have good agreement with Lee (1965) graphs.
- MD: At the peak shear strengths, the sample change behavior from dilatancy to contraction.