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AIMS AND OBJECTIVES BACKGROUND

Develop a holistic framework for tsunami

. o _ Impact assessment is important for proactive
vulnerability assessment of critical infrastructure

tsunami risk management. However, research on

= Develop vulnerability models for tsunami impacts tsunami vulnerability of infrastructure lifelines is

on infrastructure which consider a range of: largely under-developed.

- Lifeline networks and components Tsunami vulnerability functions typically use

- Hazard intensity measures depth as a proxy for direct damage. We aim to

develop new functions which consider
- Impact types

construction standards (material etc.) multiple

= Apply synthesised vulnerability functions to a hazards (depth, speed, loading) and impact types

New Zealand-based case study (direct damage, functionality, outage time).

METHODOLOGY AND FRAMEWORK
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RESULTS APPLICATION
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Effect of cross-section and orientation (for concrete |-sections) on horizontal force
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