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As the cost of lifeline disruption rises with the size and complexity of urban com-7

munities, increasing efforts are put into enhancing infrastructure resilience to natural8

disasters. Aiming to improve the understanding of water supply network seismic re-9

silience, this paper examines in detail the initial performance and restoration of the10

water supply network following the 22 February 2011 Mw 6.2 Christchurch, New11

Zealand, earthquake. In addition, a method to optimize the recovery of such systems12

is developed in two phases: the prioritization of pipe inspection and the prioritiza-13

tion of pipe repairs. The results inferred from observed pipe repairs suggest that the14

recovery was carried out efficiently, however, applying the proposed methodology15

would have substantially improved the recovery of the system with a 30% reduction16

in the number of buildings deprived of water in the first two days. Assumptions and17

limitations of the modelling are also discussed and practical solutions given to apply18

this framework in real-time for post earthquake restoration.19

INTRODUCTION20

In increasingly connected and complex societies, infrastructure resilience and post-disaster re-21

covery is receiving growing attention from public and private sectors, such as RESILENS22

(Hynes et al., 2016) from the European Union, Resilience to Nature’s Challenges (Fraser, 2017)23

from the New Zealand Government and 100 Resilient Cities (Choi, 2017) from the Rockfeller24

Foundation. Acute stresses on infrastructure caused by extreme events, such as earthquakes, are25

recognized as a major factor in socio-economic disruption as observed by Rose et al. (1997);26

Tierney (1997); Dahlhamer et al. (1999); Miles and Chang (2006); Hallegatte (2008) and Love27
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(2011). In particular, disruptions in the water supply system can disable fire-fighting capabili-28

ties (Borden, 1997; Hughes et al., 2017); impede business and farming productivity, including29

tourism attractiveness (Rose et al., 1997; Stevenson et al., 2012, 2017); and alter the daily life30

of the resident population (McReynolds and Simmons, 1995 ; Chung et al., 1996, pp. 301 - 33331

; Hughes et al., 2017).32

The aftermath of the 22 February 2011 Mw 6.2 Christchurch earthquake and its geotechnical33

consequences provide a stark illustration of the importance of resilient infrastructure (Bradley34

and Cubrinovski, 2011; Cubrinovski et al., 2011; Bradley et al., 2014; Bouziou et al., 2015).35

King et al. (2014) estimated that the costs of public infrastructure rebuild would be NZD 636

billion or 3% of the New Zealand GDP. Previously technical literature has extensively de-37

scribed the damage to the road, gas, water supply, sewerage and electricity networks, which38

were severely impacted by liquefaction and lateral spreading (Giovinazzi et al., 2011 ; Eidinger39

and Tang, 2012, pp. 152–171 ; Cubrinovski et al., 2014, pp. 10–45 ; O’Rourke et al., 2014). In40

particular, Giovinazzi et al. (2011) reported that approximately 50% of Christchurch was with-41

out water access on the day of the event and that it took a month to restore 95% of water supply42

services. By tracking the number of detected pipe failures over time, O’Rourke et al. (2014)43

estimated that the system was nominally restored after 53 days following the event.44

In order to reduce the impact of lifeline disruption due to widespread system damage im-45

pacting functionality, several inspection and repair scheduling algorithms have been developed46

while optimizing the use of available resources. In particular, linear programming (LP) or47

mixed-integer linear programming (MILP) algorithms have proven relatively efficient to accel-48

erate recovery processes of different lifeline systems, e.g. Yao and Min (1998) for electricity49

networks and Feng and Wang (2003) for the road networks. Fang and Sansavini (2017) pro-50

posed an MILP-based model that optimizes restoration of network connectivity, while mitigat-51

ing future losses by rebuilding infrastructure in less vulnerable areas. While the latter approach52

suits strategic rather than urban infrastructure due to the high asset density and the already-53

existing redundancy in urban systems (e.g. high-voltage transmission power lines or continental54

gas pipelines versus power distribution grid, sewerage or water supply networks), solving any of55

these approaches can become prohibitly computationally expensive for large systems with cur-56

rent resources. In such cases, the optimum can alternatively be obtained by using metaheuristic57

techniques. For example, Xu et al. (2007) propose a genetic algorithm (GA)-based scheduling58

recovery process (inspection, damage assessment and restoration) for a collection of power sta-59

tions that minimizes the number of people disconnected from the network over time. Power60
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lines are not considered in the analysis and the problem’s constraints are given by the number61

of repair teams. Bocchini et al. (2013) also use a GA-based algorithm to produce Pareto-set62

optimal solutions that maximize the connection between vertices of a road network composed63

of several bridges.64

Few studies have focused on improving or measuring the resilience of water supply net-65

works. Among these, Tabucchi et al. (2010) propose a restoration process for the Los Angeles66

City water supply network. It prioritizes the inspection of pipes based on their distance to the67

epicentre and repair based on the distance from the closest water source (e.g. wells or reser-68

voirs). The primary objective of this method is to minimize the number of people disconnected69

during the recovery period. In their study, the water flow is simulated, however only main70

pipelines are considered, and the community is modelled as demand nodes. Klise et al. (2017)71

propose a software to analyse the resilience of water supply networks, which accounts for the72

water flow, the capacity to produce fresh water and the demand from the community. How-73

ever, the suggested recovery strategy does not consider the inspection and damage assessment74

processes (i.e. it assumes all pipe failure locations and their severity are known).75

Despite the efforts made to develop accurate recovery models for water supply systems, sev-76

eral problems remain. First, as emphasized by Zorn and Shamseldin (2016), interdependencies77

between systems can play a crucial role in their respective functionality. This is particularly78

true for water supply systems, which are highly reliant on the functionality of the electric power79

network. Second, the detection of pipe failure can mobilize a non-negligible portion of the80

available human resources and take several weeks as noted by Hughes et al. (2017) in the con-81

text of the 14 November 2016 Mw 7.8 Kaikoura earthquake. Third, as new pipe failures are82

detected, repair priorities might evolve. Hence, a periodic re-assessment of the repair priorities83

is necessary to ensure the implementation of the optimal solution.84

In this paper, the historical recovery of the Christchurch water supply following the 2285

February 2011 event is inferred from reported pipe failures and a GA-based optimization method86

for post-earthquake recovery dedicated to water supply systems is proposed. The recovery is87

expressed utilizing city-scale metrics such as the number of impacted buildings, the population88

or the building utility (see Table 1) and explicitly accounts for the dependency on the function-89

ality of the electric power network. The proposed optimization method operates on a periodic90

basis and minimizes a weighted combination of the population, the utility of buildings and the91

number of buildings disconnected from the water supply system. Finally, both the historical92
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and optimized recoveries are compared.93

INFERRED RECOVERY OF THE WATER SUPPLY NETWORK FOLLOWING THE94

22 FEBRUARY 2011 MW 6.2 CHRISTCHURCH EARTHQUAKE95

This section briefly describes the datasets used in the historical analysis, the assumptions and96

the results of the inferred co-seismic performance of the water supply network. The phrase ‘in-97

ferred’ is used to indicate that quantitative metrics to describe network-level recovery were not98

directly catalogued, but are reconstructed through more granular, historical records combined99

with an understanding of the network topology and interviews with water supply network per-100

sonnel. In addition, the inferred co-seismic performance is compared to a prediction consider-101

ing the same assumptions, where pipe failures are generated through a Monte-Carlo simulation102

scheme. The historical recovery is then derived from reported pipe repairs and discussed with103

respect to the community.104

WATER SUPPLY NETWORK AND COMMUNITY DATASETS105

The Christchurch water supply network is composed of 3,246 kilometres of pipelines, out of106

which 1,612 kilometres are trunk main or main pipelines and 1,634 kilometres are submain or107

crossover pipelines. Cubrinovski et al. (2014, pp. 3–9) provide an accurate description of the108

pipe network in terms of topology, material composition and technology. The analysed network109

is supplied by 92 pump stations out of which 23 have a diesel generator allowing them to operate110

during long power outages. Most pump stations are located nearby a water supply source (bored111

wells or tanks). A few exceptions are located in low density residential suburbs in the Port Hills112

area.113

The Christchurch community is described by three different datasets: (1) the land usage114

that provides the category of buildings (business, medical, school, residential, rural or critical)115

(M. Hughes, pers. comm.); (2) the building footprints that gives the location and geometry of116

each building (M. Hughes, pers. comm.); and (3) the census that provides an estimate of the117

population over meshblocks, areas delineated by the New Zealand authorities for this specific118

purpose (Statistics New Zealand, 2013a). To reduce the computational burden and avoid mis-119

assignment of population to buildings, building footprints of less than 20 square meters were120

removed, while building footprints more than 200 meters from a submain pipe were considered121

off-grid and also removed. The final building footprint dataset enclosing the usage informa-122
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Table 1. Christchurch City Council utility values (Irmana Garcia Sampedro, pers. comm.)

Utility value Description Categories

1 Very low Rural ; Residential

2 Low Commercial ; Industrial

3 Medium School ; Childcare ; High water usage

4 High

Hospital without emergency facilities ; Rest home ;

Emergency services ; Correction department facility ;

General practitioner office

5 Very high
Lifeline facility ; Civil defence welfare center ;

Hospital with emergency facilities

tion contains 209,442 buildings, of which 8,008 are business buildings, 2,239 school, childcare123

or university buildings, 355 hospitals or medical buildings and 55 critical buildings, with the124

remainder being essentially composed of residential, rural, cultural and recreational buildings.125

Based on the usage category, the Christchurch City Council assigns utility of buildings values to126

buildings as presented in Table 1. These values represent the importance of the building for the127

functioning of the community. As the acquired building dataset does not possess all presented128

categories, the distribution of utility value is slightly simplified: the label High water user is129

ignored, there is no utility value equal to 4 and a value of 5 is given to all medical buildings (i.e.130

to hospital without emergency facilities, rest homes and hospital with emergency facilities). To131

assign population to buildings, it is assumed that people can only occupy Residential and Rural132

buildings. As the 2011 population census was not carried out due to the 2010-2011 Canter-133

bury earthquake sequence (Statistics New Zealand, 2013b), the population is estimated by a134

linear extrapolation from the two previous censuses realized in 2001 and 2006 by the Statistics135

New Zealand (2013a). The estimated population in 2011 in the considered buildings is ap-136

proximately 351,500 people. The population was then assigned to each Residential and Rural137

building depending on the density of population over the inhabitable area of the meshblocks138

and the building footprint size. Figure 1 shows the different usage of the building footprints and139

the Christchurch water supply network.140
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Figure 1. Map of the Christchurch building stock annotated according to building use, water supply
pipe network and pump stations

ESTIMATED INITIAL PERFORMANCE AND ITS MODELLING141

The 22 February 2011 Mw 6.2 Christchurch earthquake caused 3,039 pipe failures (Eidinger142

and Tang, 2012, p. 159), mostly due to severe liquefaction and lateral spreading. Cubrinovski143

et al. (2014, p. 19) discussed their geospatial distribution and O’Rourke et al. (2014) provide144

the observed daily repair rate and inferred the ‘effective’ completion of the earthquake-related145

repairs on the 15th of April 2011, 53 days after the earthquake. Immediately after the earthquake,146

large portions of the city were also in areas with power outages (L. Dueñas-Osorio, pers. comm.147

; Fenwick et al., 2011), disabling the majority of the pump stations. Access to power was the148

most important factor for the network in order to operate pump stations (K. Snyder-Bishop,149

pers. comm.).150

Two neighbouring pump stations located in the Port Hills (South-East of the city; Figure 1)151

suffered from critical failures (one from cliff collapse, see Dellow et al. (2011) for more details,152

and the other from extensive structural damage) and have not been brought back to service (K.153

Snyder-Bishop, pers. comm.). To estimate the initial impact of pipe failures and disabled pump154

stations, several assumptions have been made. First, water flow is not explicitly considered155
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for computational reasons as detailed in a subsequent section (i.e. the proposed work is based156

solely on pipe connectivity). However, given the relatively uniform geospatial distribution of157

the pump stations across the city, it is believed that this assumption has only a second order158

effect. Furthermore, the type and severity of pipe damage has not been adequately documented,159

such that individual pipe functionality cannot be inferred. Hence, this analysis monitors the160

water delivery as defined in Davis (2014). Second, a pipe is assumed to have lost its connection161

if at least one failure has occurred on all its potential routes from any source or on itself (as162

presented in Equation 1 below). Third, pump stations equipped with a diesel generator have163

been brought back to service within the first 24 hours of the earthquake as road access was not a164

major problem in Christchurch (Eidinger and Tang, 2012, pp. 248–265). Hence, diesel-powered165

pump stations were considered out of service only on the day of the event itself. Fourth, despite166

minor relocation of population and businesses (Stevenson et al., 2011; Chang et al., 2014),167

buildings are considered to require reconnection to the water supply (i.e. they are all considered168

as a demand node for water resources, irrespective of what their damage state was). Note that169

this assumption is consistent with the fact that government-provided temporary housing was170

unused and quickly closed down (Giovinazzi et al., 2012). Fifth, buildings are assumed to be171

connected to their closest submain and private connections from the submains to the buildings172

are not considered. Finally, as long as one undamaged pipeline route exists from a building to a173

pump station, the former is considered connected to the latter as expressed in Equation 1.174 
Connected, if min

1≤j≤Mi

Nfail,i,j = 0

Disconnected, otherwise
(1)

where Mi is the number of potential routes from any source to building i and Nfail,i,j is the175

number of pipe failures on existing route j of building i. Note that this equation is also valid to176

assess pipe connectivity status.177

As subsequently discussed, to optimize the recovery process, pipe damage and building178

connectivity predictions are necessary. Damage prediction is evaluated for each individual pipe179

and uses the pipe fragility functions developed from Christchurch damage data by Bellagamba180

et al. (Accepted). These functions require, in addition to the pipe characteristics (length, mate-181

rial and diameter), the estimated peak ground velocity (PGV) and the liquefaction susceptibility182

of the soil expressed as its cyclic resistance ratio (CRR) at pipe installation depth. The PGV183

is probabilistically generated as a spatially correlated random field using the median and stan-184

dard deviation of the PGV estimated by Bradley (2014) and the spatial correlation coefficient185
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proposed by Jayaram and Baker (2009). The CRR is inferred from the liquefaction resistance186

index map compiled by Cubrinovski et al. (2014, pp. 13–15) as proposed by Bellagamba et al.187

(Accepted). Building connectivity is assessed following the procedure used to infer the inferred188

initial network performance. To achieve stable results, 2000 realizations from the Monte-Carlo189

scheme were executed and sufficient convergence was attained. Either inferred or predicted, the190

performance and recovery of the water supply network are expressed by means of community-191

oriented metrics at two levels of granularity - global and specialized. The three global metrics192

measure the population, utility of buildings and number of buildings (all types) deprived of wa-193

ter. The specialized metrics quantify the business, medical (including hospitals and rest homes),194

school (including universities and childcare) and critical buildings deprived of water.195

Figure 2(a) presents the results of the inferred co-seismic performance, whereas Figure 2(b)196

shows the results of the prediction. The difference between the reported (50% of the dwellings197

without water access immediately after the earthquake reported by Giovinazzi et al., 2011) and198

inferred number of buildings deprived of water indicates that not considering the water flow199

during a generalized power outage leads to a significant underestimate of the initial impact.200

However, because the power outage only lasted one day for most of the city (L. Dueñas-Osorio,201

pers. comm. ; Fenwick et al., 2011), it is expected that the map presented in Figure 2(a)202

approximately reflects the real state of the water outage by the end of day 1 following the203

earthquake.204

The eastern suburbs of Christchurch (New Brighton, Southshore and Sumner; indicated in205

Figure 1) as well as the most severely liquefied areas (along the Avon River, also known as the206

Red zone; Figure 1) are the areas where most of the simulated outages take place. The former207

are indeed likely to suffer from an outage as they are topologically easily isolated and the lat-208

ter are the most vulnerable to suffer from large permanent ground deformations (Cubrinovski209

et al., 2011), leading to extensive pipe damage. Some areas in the Port Hills (South of the city;210

Figure 1) might have been more impacted than what is shown in Figure 2(a) due to the pressure211

loss caused by altitude changes, which was not explicitly modelled as previously noted. Fig-212

ure 2(b) presents the prediction results and illustrates important similarities with the inferred213

co-seismic initial impact: a significant portion of the buildings likely to lose their connection214

to the water supply network (i.e. probability of water outage ≥50%) are, according to the in-215

ferred co-seismic performance, disconnected from the water supply network. It must be noted216

that building connectivity is relatively well predicted, whereas pipe damage remain inaccurate.217

Further details such as the receiver operation characteristics (Fawcett, 2006) for both pipe dam-218
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(a)

(b)

Figure 2. Water supply network performance following the 22 February 2011 Mw 6.2 Christchurch
earthquake: (a) Map of the inferred co-seismic water outage and histogram indicating the portion of each
considered metric suffering from water outages ; (b) Map of predicted initial water outage (probability
of water outage)
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age and building connectivity, and the differences between the inferred and predicted analyzed219

metrics can be found in the electronic supplement in Figures A.1 and A.2, respectively.220

INFERRED WATER SERVICE RECOVERY221

Following the Christchurch earthquake, the recovery started quickly. Most suburbs recovered222

access to electricity on the day after the earthquake (L. Dueñas-Osorio, pers. comm. ; Fen-223

wick et al., 2011). Pump stations were restored once electricity access was restored or when224

their diesel generator was turned on. Despite the existence of damage, and excluding the two225

suffering from critical failures, all pump stations were able to deliver some outflow (K. Snyder-226

Bishop, pers. comm.). Pipe failure detection was realized following a two-step iterative process.227

First, pump stations were required to deliver their maximal outflow and then, repair teams were228

in charge of detecting any major leakage from abnormal traces of water on the surface. This229

process started near the pump stations and, as repairs were executed, inspections were moved230

away from their original start point. A repair priority varying from 1-10 days was assigned to231

every detected pipe failure. It is worthy to note that only the dates of detections are known, not232

the actual dates of repairs completed as described in the pipe failure dataset. A peak of 300 re-233

pair teams has been noted by Eidinger and Tang (2012, p. 159). According to the Christchurch234

City Council estimations reported by Giovinazzi et al. (2011), the system had recovered ap-235

proximately 95% of its serviceability a month following the earthquake. Eidinger and Tang236

(2012, p. 159) inferred the full recovery of the system 40 days after the earthquake (on the 5th of237

April), whereas O’Rourke et al. (2014) made a corresponding estimate of 53 days (on the 18th
238

of April). Note finally that the results presented here do not consider the temporary bypasses239

and pumps as well as isolation capabilities of the water supply network that may have been put240

in place and use during the recovery to reduce the global disruption.241

As the pipe repair dates are unknown, 100 realizations of the historical recovery are simu-242

lated. The delay between the discovery of a pipe failure and its repair is assumed following a243

discrete uniform distribution as shown in Equation 2.244

Delayi ∼ U(1, priorityi) (2)

where ∼ U denotes that Delayi is sampled following a uniform distribution and priorityi is the245

assigned priority of pipe failure i. The delays are assumed independent from each other (i.e.246

no correlation between delays is applied). Figure 3 presents the map of the simulated average247

water outage time. Similarly to the initial performance estimation, because the model does not248
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consider water flow, the outage in the central and eastern suburbs of the city are underestimated249

by 1 day. It is easy to observe that the most isolated parts of the city (New Brighton, Southshore250

and Sumner; 1) are the latest to recover water access. In these areas, electricity was restored251

relatively late and therefore pump station functionality could not be restored in a timely manner.252

The Red zone and its neighbourhood also required a long restoration period as the system was253

heavily damaged due to severe liquefaction and lateral spreading.254

Figure 3. Map of mean time for reconnection to water supply network following the historical recov-
ery process inferred from the dates of reported pipe repairs following the 22 February 2011 Mw 6.2
Christchurch earthquake

Figure 4 shows the recovery curves over time and resilience of all selected metrics as well255

as the number of pump stations remaining non-operational. The resilience R is estimated as256

proposed by Cimellaro et al. (2010, Eq. 1) and reproduced in Equation 3.257

R =

t0E+TLC∫
t0E

Q(t)/TLCdt (3)

where t0E is the occurrence time of the event, TLC is the control period of the system set to258

the entire recovery time and Q(t) is the functionality of the system in percent depending on the259

time. In the considered case, the control period is therefore set to 63 days (the recovery period),260
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dt is set to one day, and Q(t) is the inferred performance of each selected metrics. Based on261

the proposed model, it is worth noting that the pump stations apparently played a second order262

role in the recovery of the water supply access. However, the reported disruption levels by263

Giovinazzi et al. (2011) seem to be more strongly correlated with the restoration of the pump264

stations’ operability. This supposes that, as long as a significant portion of the pump stations265

are non-operational, a connectivity approach might not be sufficient to accurately assess the266

systemic disruption. Nevertheless, this approach appears to be accurate once the majority of the267

pump stations are brought back to service (around the 7th day of the recovery). Despite a lower268

initial estimate, the model seems to corroborate the observations made in previous studies: the269

7% disruption (Buildings (all types) metric) left after 30 days of recovery is consistent with the270

95% of service restoration reported by Giovinazzi et al. (2011), and most of the buildings and271

population in the simulations had recovered their water access after the 6 weeks proposed by272

Eidinger and Tang (2012, p. 159) as the end of the post-earthquake repair period. The inflexion273

point (where the repairs start to have a significant effect on the attenuation of the disruption)274

occurs around the 15th day, when the northern parts of New Brighton were serviced again (north-275

eastern yellow areas in Figure 3).276
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Figure 4. Mean water access recovery curves of the selected metrics following the 22 February 2011 Mw

6.2 Christchurch earthquake (shaded areas represent the first standard deviation boundaries of each met-
ric) ; estimated completion of the repair work by Eidinger and Tang (2012) and O’Rourke et al. (2014) ;
and interpolation between the levels of disruption (indicated by diamonds) reported by Giovinazzi et al.
(2011). Numbers between brackets indicate the resilience of each metric estimated with Cimellaro et al.
(2010, eq. 1).

As observable in Figure 4, the shape of the presented recovery curves follows a cosine-277
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shape, which is attributed to a “not well prepared community” by Cimellaro et al. (2010). This278

classification should be further interrogated in relation to a number of factors. First, at the279

beginning of the repair period (about one day), the real recovery curve may be closer to the280

disruption level interpolation reported by Giovinazzi et al. (2011), which follows an exponential281

function and can therefore be related to a “well prepared community”. Second, as the water282

supply system possesses a strong dependency to the power grid, the water supply system has to283

“wait” for the restoration of the electric power network, or has to operate on alternative power284

sources (e.g. diesel-powered backup systems). Third, the damage detection of underground285

systems requires more resources than systems that are located at the surface, slowing down the286

actual repair process. Finally, as aforementioned, the potentially positive effects of temporary287

measures have not been taken into account, reducing the measured resilience of the system.288

PROPOSED RECOVERY OPTIMIZATION METHODOLOGY BASED ON A289

GENETIC ALGORITHM290

In the development of their framework, Bruneau et al. (2003) characterize the seismic resilience291

of a system with its robustness, redundancy, rapidity and resourcefulness. Therefore, based on292

the observed system robustness and existing redundancies, the use of its resources and its rapid-293

ity to react can be optimized. As observed during the water supply restoration in Christchurch,294

the detection of the pipe failures can take a non-negligible time, leading to potential changes in295

the optimal repair priorities. Hence, these repair priorities have to be periodically re-evaluated296

in order to improve the resilience of the system by maximizing the effect of the repairs on its297

serviceability. The constraints of the problem are the periodic capacity to inspect and repair298

pipes (i.e. the maximum inspectable pipe length and the maximum number of executable pipe299

repairs, respectively). In this section, an inspection priority ranking approach is described, and300

the proposed GA-optimized repair process explained.301

INSPECTION PRIORITY LIST302

Based on predicted damage and serviceability results, an inspection priority list is established.303

This list ranks the pipes based on the inverse of their probability of survival, and on their prob-304

ability of connection survival due to their own failure, as proposed in Equation 4. The proba-305

bilities of pipe disconnection are estimated considering all working or repairable pump stations306

(i.e. only excluding pump stations suffering from critical failure). Hence, inspections prioritize307
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pipes with high probability of failure and low probability of disconnection (closer to a working308

or repairable pump station).309

Scorei =
1− PDisc,i + Pf,i

(1− Pf,i)
2 + ϵ

(4)

where Pf,i is the failure probability of pipe i from pipe fragility analysis, and PDisc,i the discon-

nection probability of pipe i from network connectivity analysis. A small value ϵ (0.00001) is

added to the denominator to avoid division by 0. PDisc,i is computed from Equation 5.

PDisc,i = min
1≤j≤Ni

PDisc,i,j (5)

with PDisc,i,j = 1−
mj∏
k=1

(1− Pf,k) (6)

where Ni is the number of potential routes from any water source to pipe i, and PDisc,i,j is310

the disconnection probability of route j composed of mj pipes. The inspection priority list is311

compiled only once at the beginning and remains unchanged for the entire recovery process for312

computational reasons. This method is limited by the inability of some of the pump stations to313

operate at the creation of the list, as they are, for example, not able to access electric power.314

However, as the first failed pipe on a particular route receives the highest priority, and although315

it simplifies the inspection process as it has been carried out, the list is believed to optimize it316

in a relatively realistic fashion.317

FORMULATION OF THE REPAIR OPTIMIZATION LINEAR PROGRAM318

As mentioned earlier, the recovery process of a spatially-distributed infrastructure system can

be expressed as an MILP, whose objective function minimizes the loss of serviceability. Here,

the repair optimization takes into account the two parallel processes occurring during the recov-

ery: (1) inspection of the network, and (2) individual pipe repairs. During each repair period,

uninspected pipes having the highest inspection score are inspected such that the entire inspec-

tion capacity is used. Newly discovered pipe failures are added to the potential repair list at

the end of the repair period. In parallel, the serviceability at each repair period is optimized

with an MILP that minimizes a weighted combination of the population, the number of build-

ings and the utility of buildings deprived of water by prioritizing pipe repairs constrained by

the maximum repair capacity. In other words, the objective of the program is the minimization

of a linear combination of variables representing the outage impact, decision variables are the

detected and unrepaired pipe failures, and the constraint is given in terms of time-dependent

repair capacity. Note that the optimal solution of an iteration is agnostic to the optimal solution
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of the previous one (i.e. the algorithm gives the optimal tactical solution but does not follow a

global strategy over time). Equations 7 to 11 mathematically set the considered MILP.

min Ξ =
N∑
i=1

[
Qi ·min

(
1; min

1≤j≤Mi

Nfail,i,j,t (ΥR,t,ΥI,t)

)]
(7)

subject to ∥ΥR,t∥1 ≤ CR,t (8)

∥ΥI,t∥1 ≤ CI,t (9)

with Qi =
L=3∑
k=1

wkqi,k (10)

and
3∑

k=1

wk = 1 (11)

where N is the number of buildings in the dataset, Qi is the quantity of the objective metric319

of building i, Mi is the number of potential routes from any source to building i, Nfail,i,j,t is320

the number of pipe failures on existing route j of building i computed at the end of period t.321

Nfail,i,j,t depends on decision variables ΥR,t and ΥI,t, the allocation of the repair and inspection322

capacities over period t, respectively. Their respective Manhattan norm ∥ΥR,t∥1 and ∥ΥI,t∥1323

represents the utilized repair and inspection resources over period t. CR,t and CI,t are scalars324

expressing the maximum repair and inspection capacities over period t, respectively. Inspection325

and repair capacities are given in terms of pipe length and pipe failures, respectively. In a real326

case, those values will depend on the available human and financial resources and construc-327

tion material and require careful assessment as discussed in Section 4.3. The quantity Qi is328

computed as the sum of products between the objective function weights wk and the three con-329

sidered quantities qi,k. For this work, three different quantities are considered to be optimized:330

(1) the population; (2) the utility of buildings; and (3) the number of buildings (always equal331

to 1 for a single building). The weights wk must be set with respect to the recovery manager’s332

objectives. Weighting based on the maximum number of buildings alone may be appropriate333

for rural areas where authority-owned buildings may not be able to shelter and provide services334

for a large number of people. Hence accelerating the service recovery of a large number of335

buildings (houses and farms) can be seen as critical. The combination of two or more quanti-336

ties may be more suitable to urban areas, as recovery officers may want to restore services for337

productive capacities and critical facilities more quickly than in rural areas. The density being338

generally higher in urban than rural areas, targeting the population and utility would have a339

greater positive effect on the population and economy than targeting the number of buildings.340
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IMPLEMENTATION OF THE GENETIC ALGORITHM341

The periodic allocation of repair resources can be encoded as a binary vector composed of 0 for342

do nothing and 1 for repair as proposed by (Fang and Sansavini, 2017, Eq. 10). Following the343

same reasoning, the periodic allocation of inspection resources is encoded as 0 for do nothing344

and the length of pipe occupying a given position in the vector for inspect. The size of both345

vectors represents the number of pipes in the system and the number of non-repaired pipe fail-346

ures for the inspection and repair vectors, respectively. However, as the inspection ranking list347

is immutable, the allocation of the inspection capacity is predetermined for each period. The348

dimension of the problem (i.e. the number of decision variables it contains) is then determined349

by the number of unrepaired pipe failures. The search space of the MILP therefore becomes the350

set of all potential repair permutations. The permutation number can be computed as a binomial351

coefficient with the number of non-repaired pipe failures and the repair capacity as coefficients.352

As the problem can rapidly become very large and have multiple local minima, brute force353

approaches or convergence algorithms would be inefficient and lead to suboptimal solutions.354

Given the encoding of the problem, its size and the potentially non-convex search space, a ge-355

netic algorithm (GA) was implemented, which is recognized as an efficient method to solve356

such problems (Mitchell, 1998, pp.116 –117). GA does not always deliver the optimal solution357

but yields a ‘good’ solution at lesser computational expense than other techniques. However,358

GA requires a maximization problem. Hence, the objective function presented in Equation 7 is359

transformed into a maximization problem presented in Equation 12, whereas the constraints do360

not change.361

Ξ =
N∑
i=1

[
Qi ·

(
1−min

(
1; min

1≤j≤Mi

Nfail,i,j,t (ΥR,t,ΥI,t)

))]
(12)

In the GA context, a set of potential solutions of the problem is called a population. Individuals362

of this population are called chromosomes and their characteristics, alleles. Here, chromosomes363

are the daily repair solutions that satisfies the constraints (i.e. they are part of the search space)364

and alleles represent each detected, but unrepaired, pipe failure. An allele encodes a trait,365

the value of the allele (in our case, repair or do nothing). A locus represents the position366

of a particular allele on a chromosome. Hence a particular locus represents the position of a367

particular pipe failure in the database. The ability of a chromosome to survive or reproduce is368

given by its fitness, computed as the result of the objective function in Equation 12.369

To converge toward a fitter population, chromosomes mate with each other in pairs over370
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steps called generations. The mating process consists of three distinct operations: selection371

(which chromosomes mate), crossover (which alleles are exchanged between mating chromo-372

somes) and mutation (which alleles are randomly modified). The mating process between two373

chromosomes creates two offspring. More information about GAs and their implementation can374

be found in Mitchell (1998) and Haupt and Haupt (1998).375

In this study, the selection of chromosomes is realized via a binomial tournament and376

elitism. The former operator randomly picks two chromosomes from the current population377

and select the fittest ones for reproduction, allowing small fitness chromosomes to mate and378

slowing down the convergence rate of the algorithm, whereas the latter retains the best Nelite379

chromosomes of each generation for the next one without altering them. Parametrized uni-380

form crossover is chosen as the crossover operator and locus swap as the mutation operator.381

The parametrized uniform crossover operator assigns the same probability of exchanging traits382

for all loci from both mating chromosomes. Once the offspring are created, the mutation op-383

erator decides if the encoded trait of two randomly chosen loci of the same chromosome are384

exchanged. Once the new generation is ready, it replaces the old one and the whole process385

is repeated a determined number of times or until a local optimum has been found (i.e. the386

standard deviation of the population fitness is equal to 0).387

CASE STUDY: WATER SUPPLY NETWORK RECOVERY FOLLOWING THE 22388

FEBRUARY 2011 MW 6.2 CHRISTCHURCH EARTHQUAKE389

To test the efficiency of the proposed GA optimization the Christchurch water supply network390

recovery following the 22 February 2011 Mw 6.2 earthquake was considered. The number and391

location of the pipe failures, the operational status and restoration time of pump stations are392

identical to that presented in Section 2. In the paragraphs that follow, first, the assumptions393

and parameters required to carry out the GA-based process are given. The optimized recovery394

curves and map are then presented and discussed in relation to the resilience metrics. Finally,395

the procedure for real-time application of this method is given.396

OPTIMIZATION PARAMETERS397

In order to account for missing information (e.g. the number of repair teams over the recovery398

period), several assumptions were made. Justifications for the parameter choices and assump-399

tions are given in the next paragraph. The repair period is fixed to one day (i.e. repair priority400
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assignment and system functionality are evaluated every day). The daily repair capacity is set401

to 50, the daily inspection capacity is set to 55 kilometres, the objective function weights are402

set to 0.5, 0.0 and 0.5 for the population, the number of buildings and the utility of buildings,403

respectively. The genetic algorithm is parametrized with a number of elite chromosomes of 2,404

a crossover rate of 75% and a mutation rate of 20%. Each generation contains 10 times the405

number of decision variables or a maximum of 1,000 chromosomes and the maximum number406

of fitness evaluations (the computational budget) is set to 5,000 per daily solution.407

The daily repair and inspection rates represent the average observed repair rate following408

the Christchurch earthquake, due to the lack of the specific data enabling a time-varying rate to409

be reasonably assigned. This simple assumption allows all pipe failures to be discovered and410

repaired over the observed recovery period of 62 days (i.e. that the recovery period following411

the optimization process is not excessively longer or shorter than the observed one). However,412

as noted by (Eidinger and Tang, 2012, p. 159), these quantities have largely varied over time413

during the Christchurch recovery as resources were pulled out of neighbouring regions to par-414

ticipate to the restoration effort. The restoration capacity in a real case is treated in Section415

4.3. The assigned weights give the same importance to the population and the utility of build-416

ings, excluding de facto non-critical and non-inhabited buildings from the optimization process417

(e.g. sport and cultural facilities). This choice is consistent with previous observations made418

on the weighting choice presented in Section 3.2. However, given the relatively low population419

density of Christchurch (most of the buildings are family houses), results are not expected to420

be significantly different with another weighting. The GA-related parameters are chosen such421

that a relatively high diversity of chromosomes is held over generations by enforcing most of422

the genes to be exchanged between mating solutions and frequent mutation. The number of423

different solutions per optimization problem is set according to the recommendations of Storn424

(1996) and Mallipeddi and Suganthan (2008) for low dimensionality problems. In addition to425

the computational burden a large chromosome population imposes, it is seen as an obstacle426

to convergence in evolutionary algorithms (Mallipeddi and Suganthan, 2008 and Chen et al.,427

2015). Hence, fixing its upper bound should also improves its convergence. Fixing the com-428

putational budget for each periodic solution, the number of generations inversely varies with429

the population size such that the total number of chromosomes does not exceed 5,000 fitness430

evaluations (i.e. the minimum number of generation is five). Hence, the algorithm can create up431

to a maximum of ten generations, when the population size does not exceed 500 chromosomes.432
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OPTIMIZED RECOVERY433

Figure 5 presents the optimized water service restoration time given the observed pipe fail-434

ures and aforementioned assumptions. The pump station restoration time is identical to that435

presented in Figure 3. The application of the proposed methodology leads to noteworthy im-436

provements when compared with the inferred recovery in Figure 3. First, North New Brighton437

(location indicated in Figure 1) recovers faster than was inferred from historical repairs in Fig-438

ure 3. Moreover, most of the Port Hills region regains access to the water supply system more439

quickly. However, the Red Zone, Bromley, Southshore and the rest of New Brighton suffer440

from longer water outages. This is explained by the difficulty that the inspection algorithm has441

in efficiently targeting pipes that have actually failed as subsequently discussed.442

Figure 5. Map of time for reconnection to water supply network after the 2011 February Mw 6.2
Christchurch earthquake following the GA-optimized process

Figure 6 illustrates the optimized recovery curves and comparison to the inferred recovery443

curves. Most of the analysed metrics exhibit a steeper slope at the beginning of the recovery.444

This highlights the significant gains possible by optimization with an emphasis on pipes with445

high failure probability, low disconnection probability, and those servicing large community446

areas. A relatively steep slope is also observed after 21 days of recovery and corresponds to447
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the power restoration of the New Brighton pump station and some repairs carried out in the448

Red Zone. However, the rate of improvements tend to be nullified over time. As the failure449

of individual pipelines is poorly predicted as noted in Figure A.1 (a), the inspection schedule450

(the order in which pipes are inspected) fails to efficiently prioritize actually damaged pipes451

using Equation 4. In other words, as pipe inspection becomes less accurate, the number of452

interesting repair options tends to diminish over time. This issue could be mitigated by assessing453

the probability of failure with multiple or other fragility functions based on more advanced454

statistical methods (e.g. Bagriacik et al., 2018).455
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Figure 6. Pump station restoration curve and water access recovery curves of the global metrics (Build-
ings (all types), Population and Utility of Buildings) following the 2011 February Mw 6.2 Christchurch
earthquake. Solid lines indicate GA-optimized results, whereas dashed lines show the mean inferred
recovery time.

Nevertheless, as the steep slope of the recovery curve on day 1 and 21 suggests, when critical456

pipe failures are discovered, the optimization algorithm remains highly efficient. Despite this457

limitation, taking the lower bound of both the inferred and optimized recovery, the water supply458

network would have significantly gained in resilience. Equations 13 to 15 quantify the effect of459

the recovery optimization by looking at the difference of resilience R as described in Equation460

3 (∆R), the resilience loss reduction (∆LR), and the total absolute gain (G), respectively.461

∆R = RInferred −ROptimized (13)
462

∆LR =
∆R

1−RInferred

(14)
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G = ∆R · QuantityMetric (15)

where RInferred and ROptimized are the resilience of a given metric based on the inferred and463

optimized recoveries, respectively, and QuantityMetric is the total quantity of a given metric464

as presented in Subsection 2.1. Table 2 quantitatively presents the benefits of applying the465

proposed optimization framework.466

Table 2. Quantitative summary of the recovery optimization gains for the selected metrics

Metric
Optimized

resilience

Resilience

gain

Resilience

loss reduction

Total

absolute gain

ROptimized ∆R ∆LR G

Population 96.4% 0.85% 18.9% 186,000

Utility 94.1% 1.35% 18.5% 186,000

Buildings (all types) 90.4% 2.56% 21.0% 333,000

Business buildings 96.2% ≪0.1% ≪0.1% 288

School buildings 94.8% 1.43% 21.7% 1,980

Medical buildings 99.1% ≪0.1% ≪0.1% 6

Critical buildings 98.9% 0.44% 29.3% 15

It must be noted that results presented in Figures 5 and 6, and in Table 2 only represent467

the lower-bound improvement possible using the proposed optimization method. By improving468

the accuracy of the pipe failure prediction, and relaxing the constraints of constant repair and469

inspection rates, a greater optimization would be possible.470

REAL-TIME APPLICATION471

As can be derived from the discussion in the previous section, applying this framework on472

a real-time recovery would necessitate some adjustments on how the inspection priorities are473

established, the pipe failure database is managed and the repair capacity is estimated.474

The proposed inspection method assesses pipeline integrity based on the score it obtained475

from Equation 4 irrespective of its relative location in respect with other inspections to be car-476

ried out. Two problems arise from this. First, inspections are not, and cannot, be carried out477

this way as inspection teams do not inspect small pipelines individually. Instead, they try to478

discover pipe failures in one specific area and move to the next one once the network is be-479

lieved restored at the present location. Hence, the inspection list should be used as an indicator480
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to target areas in which the inspection teams’ work will have the highest chances of discover-481

ing critical pipe failures. The second problem is the noted poor performance of the individual482

pipe failure estimation. This can be improved following two different approaches. As already483

noted, the first option would be the use of improved fragility functions based on more advanced484

statistical methods. A second option would be to combine post-earthquake LiDAR survey to485

assess land damage, as it was the case following the major events from the Canterbury Earth-486

quake Sequence (Hughes et al., 2015), with ground strain-based pipeline fragility functions487

(e.g. O’Rourke et al., 2014; Bouziou and ORourke, 2017). This option would remove the inten-488

sity measure uncertainty by direct observations, but is unable to assess damage due to transient489

ground motion. Further research is needed to explore the potential of such ideas. A third option490

could consist of a periodic Bayesian update of the pipe probability of failure based on obser-491

vations obtained during the damage inspections throughout the recovery itself. Subsequently,492

the inspection priority score can be re-evaluated and inspections would be redirected to more493

critical locations. Note also that some situations (e.g. major medical facility deprived from494

water) may require more holistic approaches such that the operator will prioritize inspections in495

potentially less damage areas in order to remedy critical issues.496

During the inspection process, some of the discovered pipe failures might not be critical497

(i.e. they do not hinder the global functioning of the network). Hence, these failures should not498

be included into the database used by the genetic algorithm to generate solutions, but left for499

the post-recovery phase as part of a long-term effort to restore or enhance the network quality.500

As the inspection capacity was only useful to infer the recovery, the only constraint of the501

problem becomes the repair capacity. The availability of this resource significantly fluctuates502

over time and should therefore be carefully and periodically assessed. Two factors can influence503

the periodic repair capacity. First, the number of repair teams can vary over time as noted by504

Eidinger and Tang (2012, pp. 159), and second repairing trunk main and main pipelines gen-505

erally requires more resources and time than repairing submain pipelines as noted by Federal506

Emergency Management Agency (2003, Table 8.1.c) and Cousins (2013, Table A.4.3). By con-507

stantly re-assessing the repair capacity and updating the pipe failure database, this framework508

could be applied on a daily basis, helping emergency managers to efficiently implement their509

strategy.510

In some instances, the objective of the emergency manager may differ from that proposed511

by the algorithm. In such cases, the emergency manager can decide to prioritize the repairs512
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differently than the proposed algorithm. The effective changes in the pipe failure database513

(executed repairs) will be taken into account in the next assessed repair period. In other words,514

the algorithm adapts its next solution to the previous manger’s decision and not to its own515

solution.516

CONCLUSION517

This paper presented an inferred estimation of the Christchurch water supply recovery following518

the 22 February 2011 Mw 6.2 Christchurch earthquake and subsequently the development of a519

genetic algorithm method to optimize the recovery of such systems for potential future events.520

Based on reported network performance and for a network possessing well-distributed water521

sources, it was shown that a connectivity analysis is sufficient to estimate the disruption once the522

majority of the pump stations are operational. As noted in other prior studies, the performance523

of water supply network is therefore strongly correlated with the power availability to pump524

stations. However, pipe failures remain a critical factor to restore services, with approximately525

30% of buildings remaining without water access after electricity was restored to the majority526

of the city.527

The presented optimization method, as applied to this case study, reduced the proportion528

disruption after two days by approximately 30% and reduced overall system resilience loss by529

20%. However, the restoration of the water services would have taken longer in some areas due530

to the inefficiency of the adopted pipeline fragility function to accurately determine the proba-531

bility of individual pipe failure. It must also be noted that no optimization was realized on the532

restoration of facilities (e.g. pump stations or wells). A global optimization on facilities and533

pipes could be carried out by iteratively combining the proposed model with a facility restora-534

tion model (e.g. Xu et al., 2007). Utilizing this framework, further studies can also determine535

the optimal number of repair teams deploy following an event. The same methodology could536

also be applied to other lifelines such as the sewerage system, the gas distribution network or537

the telecommunication network. Finally, it must be stressed that, combining the best of both the538

human holistic approach of such a problem and the optimized tactical solutions created by the539

algorithm would significantly reduce the indirect losses due to lifeline disruption.540
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DATA AND RESOURCES541

Matthew Hughes (University of Canterbury) provided the building footprint, land usage, mesh-542

block, liquefaction resistance index and ground motion intensity maps as well as the water543

supply network and pipe failures databases. The power outage map was developed and pro-544

vided by Roger Paredes and Leonardo Dueñas-Osorio (Rice University). Census information of545

each meshblock can be found at: http://www3.stats.govt.nz/meshblock/2013/546

excel/2013_mb_dataset_Canterbury_Region.zip?_ga=2.241809418.94925561.547

1523564544-257358082.1516912122. The authors developed an object-oriented soft-548

ware in C/C++ utilizing the Intel Math Kernal Library (Intel, 2017a) as well as the Intel Message549

Passing Interface library (Intel, 2017b) for the computation performed. These packages must be550

installed in order to compile and execute the program. The source code is available in the github551

repository: https://github.com/xavierbellagamba/NetworkRecovery.552
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Appendices712

ELECTRONIC SUPPLEMENT: PREDICTIVE PERFORMANCE OF THE PIPE713

DAMAGE AND BUILDING CONNECTIVITY MODEL714

This electronic supplement presents the predictive performance details for both the pipe dam-715

age and building connectivity analyses. First, the receiver operation characteristics curves are716

defined and discussed. Second, differences observed between the inferred and predicted metrics717

are given and interpreted.718

Figure A.1 provides a summary of the model performance prediction. Figure A.1 (a) illus-719

trates the cumulative distribution functions (CDF) of the pipes that remained intact (i.e. CDF720

of the true negatives) and the pipes that failed given the estimated probability of failure of the721

model (i.e. CDF of the true positives). Figure A.1 (c) exhibits the buildings that remained histor-722

ically connected to the water supply network (i.e. CDF of the true negatives) and the buildings723

that were historically disconnected from the water supply network given the estimated proba-724

bility of disconnection (i.e. CDF of the true positives). Figures A.1(b) and (d) show the receiver725

operating characteristics (ROC) curve for the pipe failure and building disconnection classi-726

fication, respectively. The area under these curves (AUC) quantifies the model performance727

(Fawcett, 2006).728

In Figures A.1 (a) and (c), the ideal case (i.e. when the predictions always perfectly match729

the inferred results) would be vertical CDFs in 0 and 1 for the true negatives and the true pos-730

itives, respectively. As it can be observed in both Figures A.1(a) and (c), the true negatives731

are relatively well predicted as the CDFs tends to be relatively steep towards 0 and flatten out732

as the probability of failure or disconnection increases. However, in Figure A.1 (a), the true733

positives (observed failed pipes) are poorly predicted. This issue arises from the construction734

of Poissonian-based fragility functions for horizontal infrastructure, as they are “less capable of735

prediction at the individual pipe [...] level” as noted by Bagriacik et al. (2018). Nevertheless,736

the global performance remains acceptable with the AUC is equal to 0.7, a value of 1 being737

perfect. The building disconnection also suffers from a lack of true positive prediction accuracy738

for several reasons. First, given the high redundancy of the analysed system, the Monte-Carlo739

simulations of the prediction rarely yields a 100% disconnection probability for a particular740

building, partially explaining the relatively flat slope below the 95% of disconnection probabil-741

ity. Second, the number of true positives is relatively low compared to the number of the true742
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negatives, inducing less robust results. Nevertheless, the true positive CDF remains below the743

identity line, indicating a good prediction rate. The goodness of the connection prediction rate744

is further corroborated by the high AUC (0.92).745
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Figure A.1. Performance of the pipe failure modelling as (a) CDFs and histograms of the true negatives
(non-failed pipes) in blue and true positives (failed pipes) in red ; and (b) ROC curve ; and performance
of the building connection modelling as (c) CDFs and histograms of the true negatives (connected build-
ings) in blue and true positives (disconnected buildings) in red ; and (d) ROC curve

Figure A.2 compares the values from the co-seismic performance inference of the selected746

metrics with the prediction distribution. Most of the inferred values remain close to the mode747

of their respective prediction distribution with the notable exception of the medical buildings.748

In this case, due to the topology of the network and the location of the buildings, less build-749

ings were deprived of water that what was previously inferred. It is worth noting that there are750

few medical and critical buildings (377 and 55, respectively) comparatively to the total number751

of buildings (209,442), leading, in the case of the critical buildings to a non-smooth distribu-752

tion. The population metric seems to also be slightly overpredicted, whereas the buildings (all753
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types) metric shows the opposite trend. This can indicate that too many residential buildings754

are predicted to lose their connections to the water supply network and/or that the predicted,755

impacted areas possess a higher population density than the one simulated from the inferred756

results. Albeit less pronounced, the same trend can be observed for the utility of buildings.757
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Figure A.2. Histograms of the prediction distribution for the selected metrics showing deprivation of
water supply and comparison with inferred actual results (indicated as a red dashed line)

iii


