Paving the road for the future loT and Aml applications

Kevin Wang

kevin.wang@auckland.ac.nz Electrical, Computer, and Software Engineering The University of Auckland

Presentation overview

- Research pathway
- Existing IoT ecosystem
- IoT technologies for Ambient Intelligence apps
 - Devices and applications
 - Communication networks
 - Data processing
 - Time series data analyses
 - Sensor data uncertainty
 - Sensor data anomaly detection

Research pathway

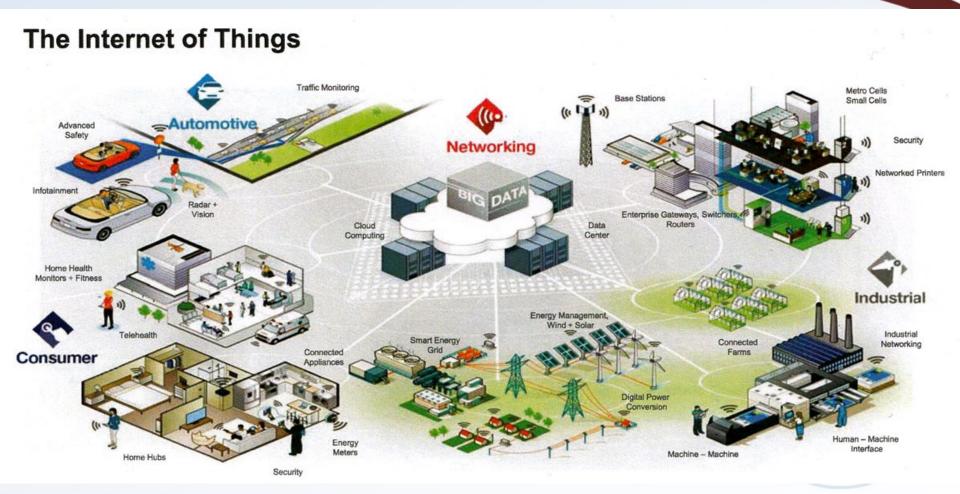
Ubiquitous Computing

- Computers are everywhere, and its services follow users
- Ambient Intelligence
 - Ubiquitous, adaptive, context aware, personalised

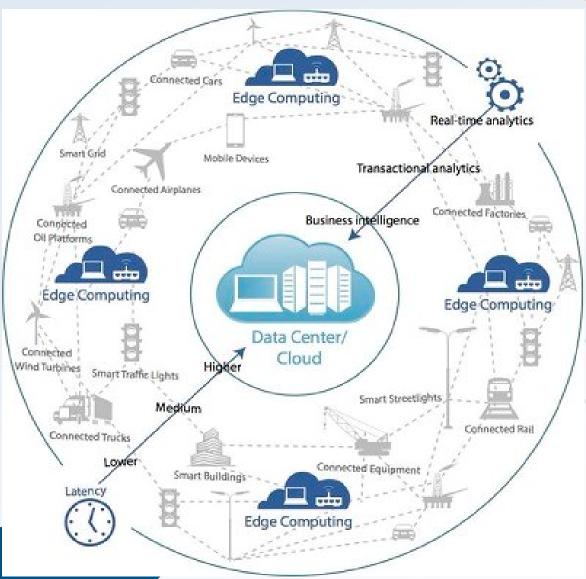
Internet of Things

- Device to device communication, at first, to interconnected everything together
- End-Edge-Cloud architecture, and cloud/edge computing

Current IoT eco-system



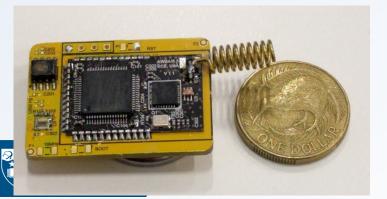
Current IoT eco-system



- Hierarchical and isolated:
 - End device -> edge -> cloud
- Challenges:
 - Interconnectivity
 - Interoperability
 - Scalability
- Cross layer design

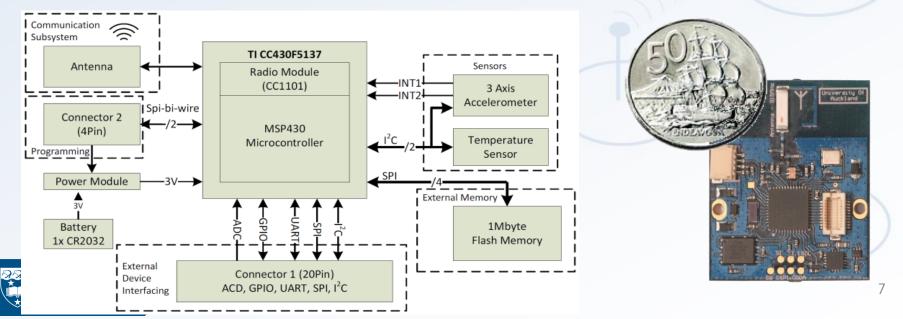
The "Things"

- The goal is to achieve unobtrusive, ubiquitous sensing and interaction
 - with immediate physical environment, human, or other "Things"
- Challenges
 - Ubiquity: small physical size
 - Longevity: long operating life
 - Interoperability: for large scale, distributed, remote monitoring and control
 - Intelligence: real-time data analytics

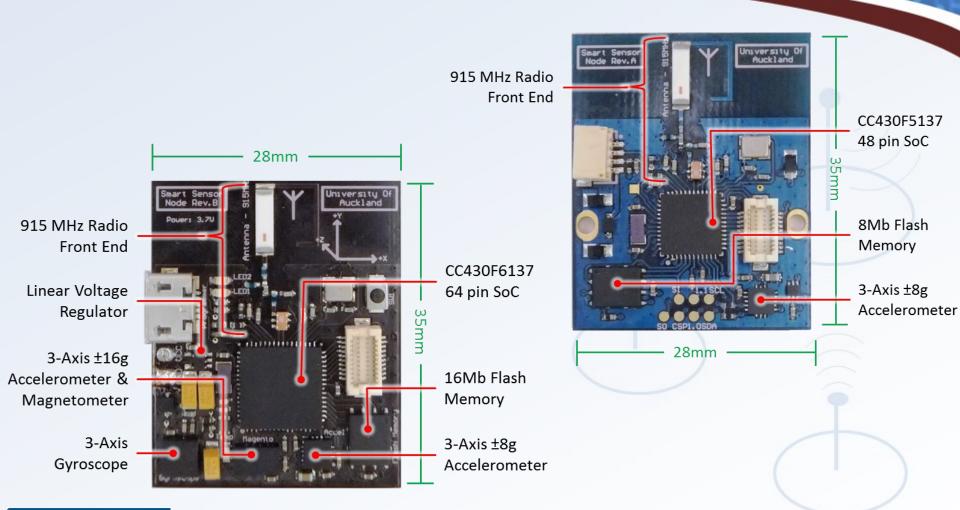


Hardware platform - AWSAM

- Auckland Wireless Sensing and Actuating Mote
- Ultra low power, miniaturised sensor node:
 - cc430 based wireless mote with 4KB RAM & 32KB flash
 - Physically small and unobtrusive (35 mm x 28mm)
 - Short communication range (100 meters)
 - Short operating life (~10 hours)

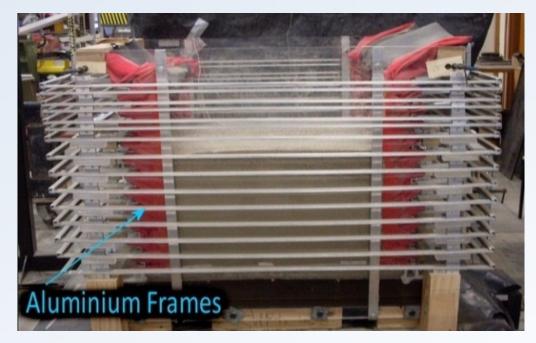


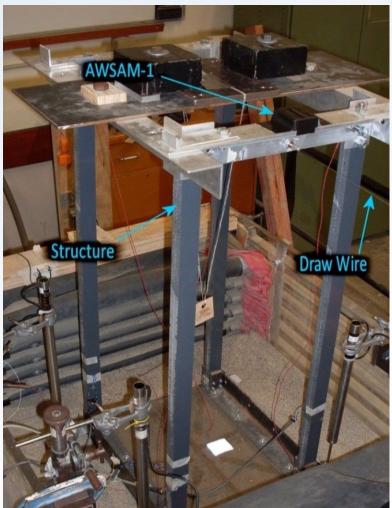
AWSAM-1&2 implementation



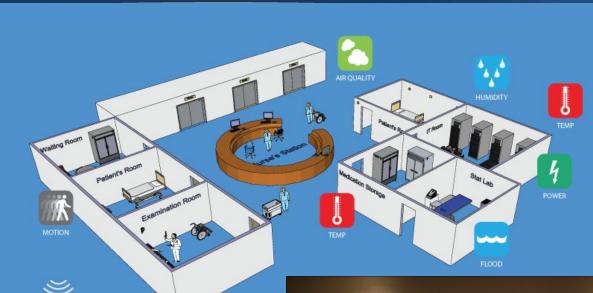
Building monitoring

- Structural health monitoring
- Intelligent infrastructure





Intelligent environments

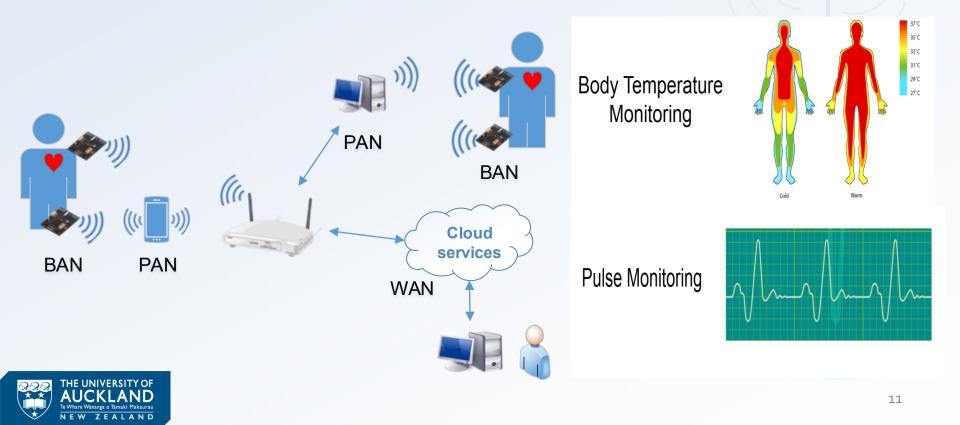


200

((Wireless

Pervasive healthcare

 Body area network (BAN) and personal area network (PAN) for pervasive healthcare applications



Communication

- Wide varieties of communication technologies
 - Short range RF (low power, long operating life): RFID, Bluetooth, WiFi
 - LPWAN (long range, low data rate): LoRaWAN, Sigfox
 - Backbone (high bandwidth, fast speed): Cellular networks, Fibre
 - Proprietary and legacy networks

Challenges:

What are the most suitable network(s) for your applications?

-> Trade-offs in design

- How to provide intuitive and integrated services?
 - -> System level solution

Data processing

Data-driven or Knowledge-driven

- Data-driven: Typically machine learning based
 - Robust against uncertainty and noise.
 - Require large amount of labelled training data.
- Knowledge-driven: Typically exploiting prior expert knowledge to build semantic or physics model.
 - Semantic model has good representability
 - Lack of the flexibility in dealing with uncertainties
- Both are able to achieve very good accuracy in lab test results

Challenges:

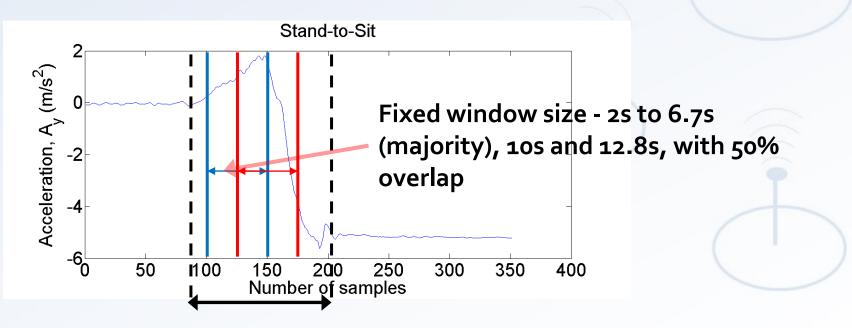
- Application specific
- Resource demanding sensing, storing, transmitting, processing
- Data quality and uncertainty
- How to extract useful patterns and information
- Visualisation and interpretation

Human activity recognition (HAR)

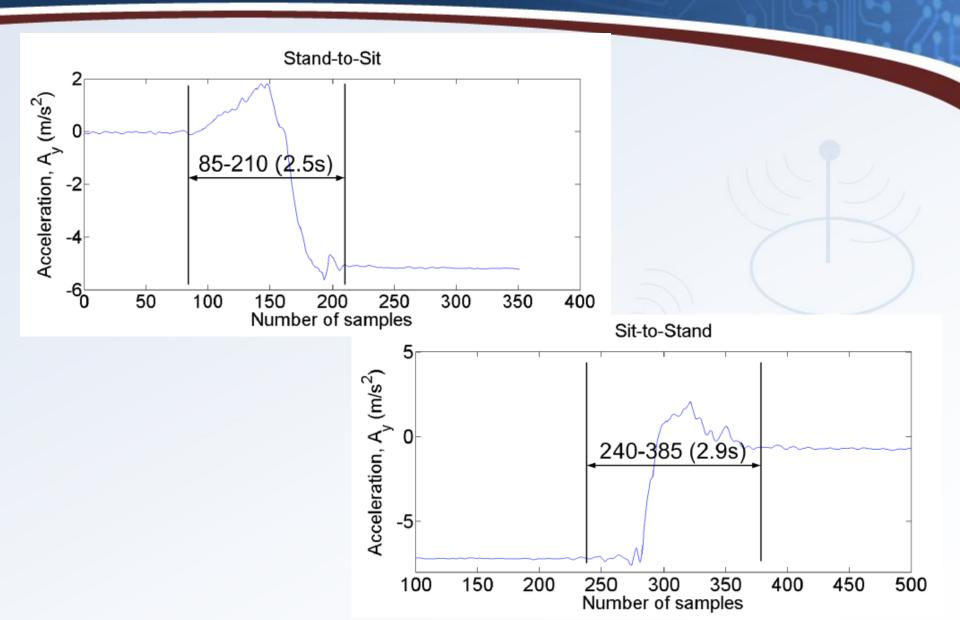
- IoT (or specifically mobile/wearable) devices for human activity recognition (HAR)
- Challenges:
 - Human motions/movements are continuous, while activities are discrete and with different durations
 - Boundaries between different activities are unknown
 - Real-time detection
- Typically, continuous sensor data is first divided into multiple discrete segments and then to be classified into specific activity class
 - How long should the segment be?

Unknown activity length

- Human physical activities can be classified into nontransitional (static/dynamic) and transitional activities
- Misclassification could happen especially for transitional activity signals because the length of transitional activity signals varies depending on the time to complete the activity

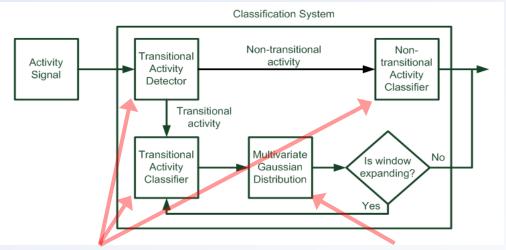


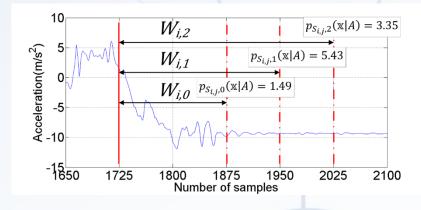
Unknown activity length - example



Adaptive sliding window

- A novel adaptive sliding window segmentation for physical activity recognition is developed
 - adaptively change the window size to deal with activity signals of varying lengths

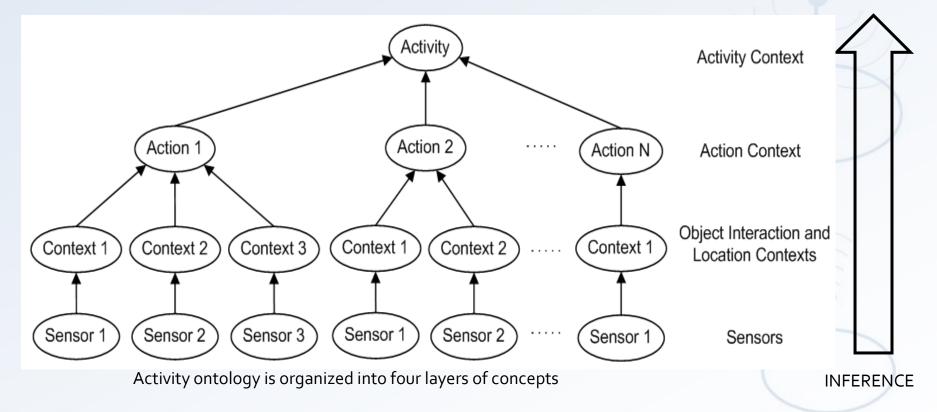




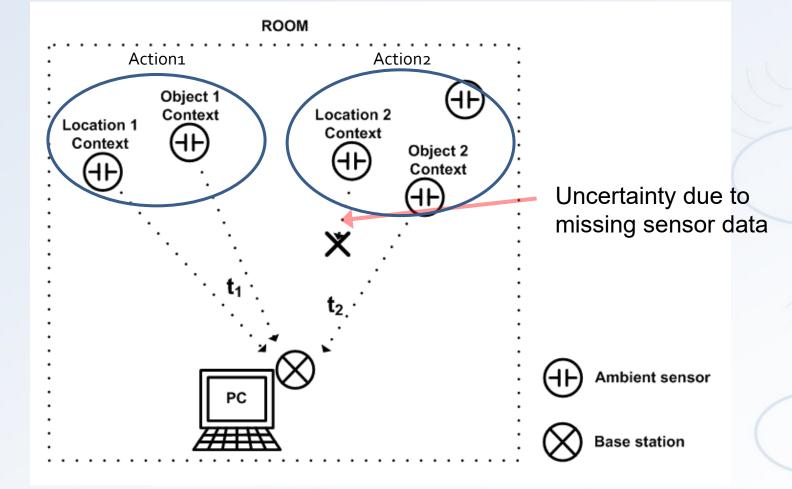
3 classifiers implemented as Decision Tree classifiers Calculate the probability of the segmented signal belong to a particular activity (window expansion)

Knowledge-based ontology reasoning

 In ontology-based HAR, an activity is recognised if every action concept associated with the activity is inferred

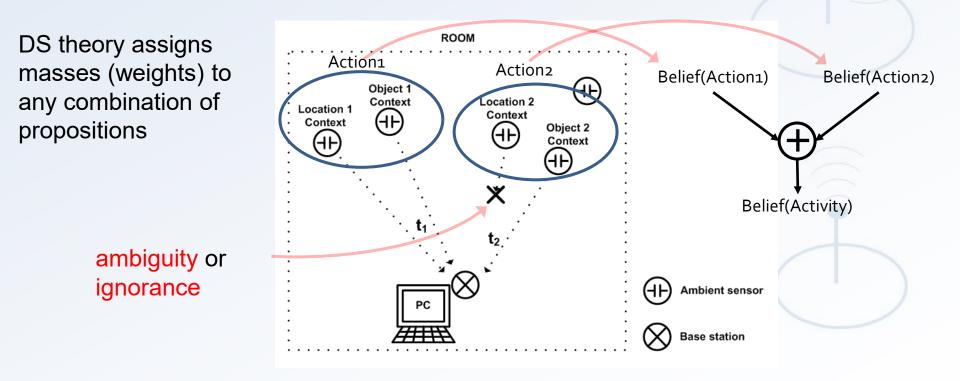


Missing sensor data



Dempster-Shafer based ontology reasoning

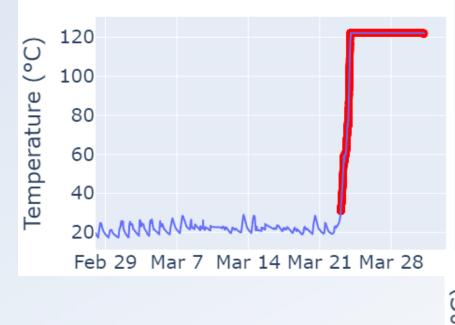
 A reasoning algorithm is proposed that integrates ontological reasoning (represented in Description Logic) with Dempster-Shafer (DS) theory to handle missing sensor data by giving inferred activity a confidence level

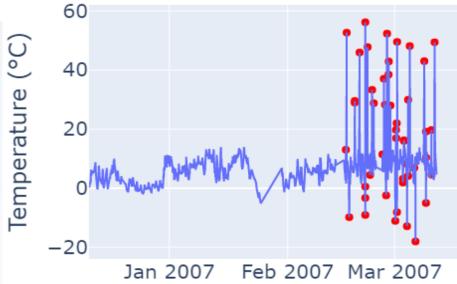


Sensor data anomaly detection

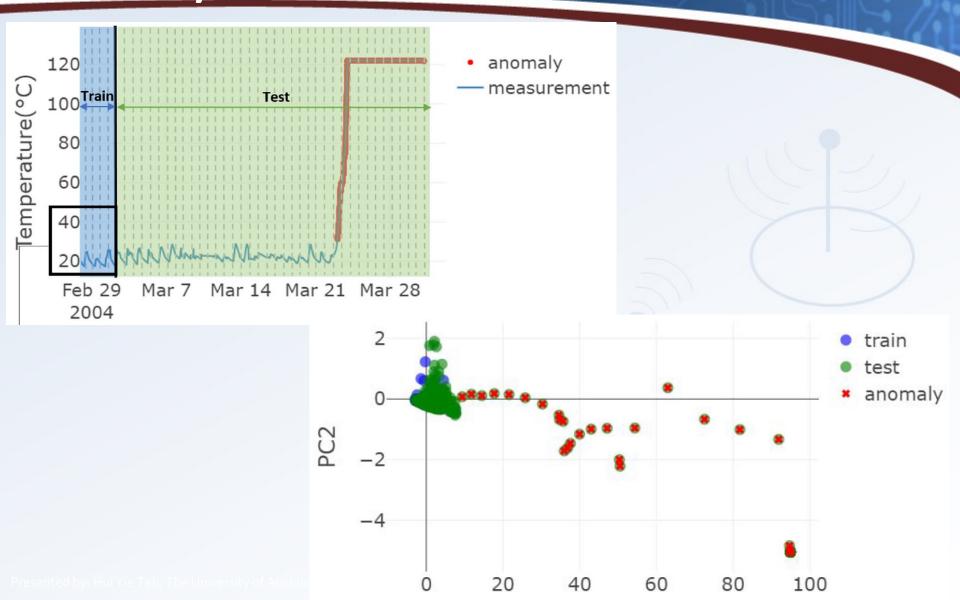
- Machine learning or data processing outcomes are heavily dependent on sensor data quality
- Sensor data suffers from many uncertainties
 - Sensor failure/drift
 - Power failure
- Challenges:
 - Calibration Manual calibration is time and cost consuming
 - Resources Limited resources such as data, bandwidth and computational power
 - Sensor-specific Sensor-dependent heuristics and features related to domain

Sensor data anomaly detection





Unsupervised Feature Selection for Anomaly Detection



Thank you

Questions?