

Te Hiranga R \bar{u} | QuakeCoRE Aotearoa New Zealand Centre for Earthquake Resilience

IP4 Theme **Disruptive Technologies for** Distributed Infrastructure and Sensing Society through IoT

IP4 Research Questions

- What is the failure hierarchy of a renewable distributed energy system in seismic events?
 - How should existing asset management investment occur to provide resilience during the transition to a renewable and distributed energy system?
 - How can real-time sensing enable early detection of network degradation pre-event, and situational awareness in the immediate post-event environment for rapid restoration?
 - How do individual utility networks develop resilience to externality risks and avoid contagion?
 - How does the trade-off in electrification of transportation, reducing vulnerable reliance on liquid fuels, but increasing resilience requirements for electricity, play out over time?

How will autonomous transportation modes function in a beyond business-as-usual environment? (e.g. physically damaged roads, disrupted electrical systems)

Need: Infrastructure NZ (2022-2052)

Te Hiranga Rū | QuakeCoRE

Aotearoa New Zealand Centre for Earthquake Resilience

Rautaki Hanganga o Aotearoa

Te Walhanga New Zealand Infrastructure Commission

Policy: Climate Change Adaptation

Te Hiranga Rū QuakeCoRE

Aotearoa New Zealand Centre for Earthquake Resilience

Aotearoa New Zealand's adaptation strategy

2022 National adaptation plan 1

This national adaptation plan will:

1. Reform institutions to be fit for a changing climate

- 2. Provide data, information and guidance to enable everyone to assess and reduce their own climate risks
- 3. Embed climate resilience across government strategies and policies

Outcome areas and objectives

Natural environment	Homes, buildings and places	Infrastructure	Communities	Economy and financial system	
Ecosystems which are healthy and connected, and where biodiversity is thriving	Homes and buildings are climate resilient and meet social and cultural needs	Reduce the vulnerability of assets exposed to climate change	Enable communities to adapt	Sectors, businesses and regional economies can adapt; participants	
	New and existing places are planned and managed to minimise risks to communities from climate change	Ensure all new infrastructure	Support vulnerable people and communities	can identify risks and take action	
and where biodiversity is thriving Robust biosecurity reduces the risk of new pests and diseases spreading Support working with nature to build resilience		is fit for a changing climate	Support	A resilient financial system underpins economic stability and growth; participants can identify. disclose	
		Use renewal	communities when they		
	Māori connections to whenua and places of cultural value are strengthened through partnerships	programmes to improve adaptive capacity	are disrupted or displaced		
			The health sector is prepared and can support	and manage climate risks	
	Threats to cultural heritage arising from climate change are understood and impacts minimised		vulnerable communities affected by climate change		

System-wide outcome areas and objectives

to adapt

Legislation and institutional arrangements are fit for purpose and provide clear roles and responsibilities

Robust information Tools, guidance about climate and methodologies risks and adaptation enhance our ability solutions is accessible to all

Unlocking investment in climate resilience

Timeline: NZ Emission Reduction Targets

Aotearoa New Zealand's emissions reduction plan

Playing our part

Sector plans	c⊾ 10 Transport	Or 11 Energy and industry	Ch 12 Building and construction	Or 15 Agriculture	ca 14 Forestry	Oh 13 Waste	Ca. 10 Fluorinated gases
--------------	--------------------	---------------------------------	--	----------------------	-------------------	----------------	--------------------------------

Te Hiranga Rū | QuakeCoRE

Aotearoa New Zealand Centre for Earthquake Resilience

Thriving households

WHAT'S UNDERWAY

- More than 1,100 electric vehicle (EV) chargers co-funded across Aotearoa with more to come.
- The Clean Vehicle package has helped triple monthly EV sales.
- The Warmer Kiwi Homes initiative helps fund heating and insulation upgrades for low-income households.
- The National Policy Statement on Urban Development to allow more housing close to urban centres and rapid and active transport routes.

WHAT'S COMING

- Most urban households to have access to a food waste collection service by 2030.
- All municipal landfills to have landfill gas capture systems by 2026.
- Zero-emissions public bus mandate established by 2025.

OUR GOALS

The total distance travelled by the light fleet (cars, vans, utes) is reduced by 20 per cent by 2035.

Zero-emissions vehicles are 30 per cent of the light fleet by 2035.

Improved insulation standards mean new buildings are warmer and drier and require 40 per cent less energy to heat.

Faster, frequent and convenient buses and trains and safe walkways and cycle lanes through our cities.

OUR GOALS

Aotearoa has a circular economy with a thriving bioeconomy by 2050.

Half of all energy we use is from renewable resources by 2035.

Incorporating matauranga Maori supports better decision-making throughout the climate response.

WHAT'S UNDERWAY

nîhî.

- Multi-million-dollar co-investment in industry decarbonisation and economic growth.
 Mandatory climate-related risk
- reporting for listed companies and financial institutions. New Zealand Green Investment Finance to accelerate investment
- in our low-carbon future. • End to new offshore fossil fuel exploration

WHAT'S

- WHAT'S COMING
- Embed Te Tiriti, mātauranga Māori, and Māori aspirations in our research, science and innovation system through the Vision Mātauranga policy.
- Grow research and development spending across Aotearoa to 2 per cent of GDP by 2030.
- Use climate innovation platforms to drive the discovery and adoption of new clean technologies.
- Develop an energy strategy by the end of 2024.

Generation and Integration Solar Power Into Smart Grid

Rizki Rahayani

Background : Hazard Risks

Te Hiranga Rū | QuakeCoRE

PhD Research Questions

Te Hiranga Rū | QuakeCoRE

Aotearoa New Zealand Centre for Earthquake Resilience

Research Questions

1. Does haze from forest fire affect significantly in solar power generation ?

2. How much solar energy can be generated during forest fires ?

3. How to select optimum location for solar power plant with minimum loss from forest fire effect?

4. How to support electricity data transmission from/to power plant ?

Objectives

Methodologies & Approach

Te Hiranga Rū | QuakeCoRE

Solar Irradiance Forecasting

Te Hiranga Rū | QuakeCoRE

Aotearoa New Zealand Centre for Earthquake Resilience

Figure 9. Solar Irradiance Forecasting Framework

Power Plant Site Planning

Te Hiranga Rū | QuakeCoRE

Communication Planning

Te Hiranga Rū | QuakeCoRE

Aotearoa New Zealand Centre for Earthquake Resilience

Figure 14. Communication Planning Framework

Figure 15. Example of Communication Planning in Network Simulator

ED1

Mobile_0_8_1

61e 0 7 1

0 6 19

Communication, Seismicity and Resilience

Eric Sauvage

Seismic Resilience Evaluation of Fixed Communication Infrastructure Systems

Farrukh Latif

• Assessment of the impact of major earthquake on the physical infrastructure of fixed communication

<u>Central offices Damage risk quantification for AF8</u> <u>Central hypocenter</u>

- Evaluation of the seismic resilience of fixed communication system
- Guidelines for seismic resilience enhancement

Telecommunication for Seismic monitoring

Te Hiranga Rū | QuakeCoRE

Aotearoa New Zealand Centre for Earthquake Resilience

SEISMOMETER VAULT

| Te Hiranga Rū | QuakeCoRE

Aotearoa New Zealand Centre for Earthquake Resilience

Acquisition and Processing

The seismic network in Nepal

Occurrence of an extreme event

Te Hiranga Rū | QuakeCoRE

Aotearoa New Zealand Centre for Earthquake Resilience

Seismic signals for the Gorkha-Nepal Earthquake, M_L=7.6 (25/04/2015)

Challenges and questions

How can real-time sensing enable early detection of network degradation pre-event, and situational awareness in the immediate post-event environment for rapid restoration?

How to define resilience for the telecommunication network and infrastructure?

Resilience supporting technologies for distributed renewable energy systems during High-Impact Low Probability (HILP) Events

Xin Liu

Phasor estimation algorithm

Synchrophasor: measurement of the **phasor** of the **fundamental** tone composing a periodic waveform of an electric quantity (i.e., voltage, current) using a **common time reference**.

The core of PMU is the **algorithm** that estimates frequency, amplitude, and phase of the main frequency component.

<u>Fundamental concepts:</u> Extraction of the fundamental tone with a distorted signal of finite length Identification of its Amplitude, Phase and Frequency.

In real world, the sampled signals are always distorted and with time-varying parameters.

Challenges and questions

What is the failure hierarchy of a renewable distributed energy system in seismic events?

How should existing asset management investment occur to provide resilience during the transition to a renewable and distributed energy system?

Identification of possible pre-event of network degradations :

- switch actions,
- disconnection of distributed generation,
- frequency events,
- machine learning based event and fault detection and localization,
- machine learning based optimal network topology, etc...

Phasor measurement unit (PMU): A device used to estimate the magnitude, phase, frequency, and rate of change of frequency using a common time source.

Phasor data concentrator (PDC): A data concentrator used in phasor measurement systems.

Sensor resilience

- Machine learning or data processing outcomes are heavily dependent on sensor data quality
- Sensor data may suffer from many uncertainties
 - **Environmental factors**
 - Sensor failure/drift
 - Power failure
- Challenges
 - Human intervention is not feasible
 - Sensor heterogeneity
- Automated sensor anomaly detection is necessary to realise a full potential distributed sensing system

Te Hiranga Rū QuakeCoRE

Situational awareness

Te Hiranga Rū | QuakeCoRE

Aotearoa New Zealand Centre for Earthquake Resilience

- Wearable and ambient sensors are able to provide contextual information for identifying various types of situations or activities, e.g.,
 - Outdoor/indoor human activities
 - Driving behaviour
- The knowledge of alike situations/activities is not necessarily transferrable
 - Different ways of deployment
 - Different types of sensor
- Challenges
 - Limited amount of sensor data
 - Lack of in-situ observation
- Robust situational awareness can be achieved through crowdsourcing and distributed machine learning and knowledge sharing

Kevin Wang, University of Auckland

Kevin Wang, University of Auckland

Distributed monitoring & control

- Future IoT-based systems will be geographically distributed
 - Smart city monitoring
 - Intelligent/Electrical/Autonomous transportation
- Highly complex network environment with mobile devices
 - Utility/Teleco/Traffic network
- Challenges
 - Dynamic and real-time events
 - Conflicting priorities
- Dynamic load balancing and resource allocation is necessary to ensure resilient and well performing network

Te Hiranga Rū | QuakeCoRE

Te Hiranga Rū | QuakeCoRE

IP4 Theme: Disruptive Technologies for Distributed Infrastructure and Sensing Society through IoT Check us out

https://wiki.canterbury.ac.nz/display/QuakeCore/IP4%3A+Harnessing+Disruptive +Technologies+for+Earthquake+Resilience

Get involved

n.nair@auckland.ac.nz Kevin.wang@auckland.ac.nz Hs.ahn@auckland.ac.nz g

garry@me.co.nz