

Methods to Account for Shallow Site Effects in Hybrid Broadband Ground-Motion Simulations

Felipe Kuncar¹

Brendon Bradley¹, Chris de la Torre¹, Adrian Rodriguez-Marek², Chuanbin Zhu¹, Robin Lee¹

¹University of Canterbury, New Zealand ²Virginia Tech, United States

QuakeCoRE – DT1 Call | 27 July 2023

Research Focus

^{2.} Path

Case Study

Site-Characterization Data

 $V_{s30} = 196 \, m/s$

Two earthquakes considered

Event	Date	Magnitude, Mw	Observed PGA (g)
Event 1	09 May 2011	4.9	0.05
Event 2	22 February 2011	6.2	0.62

Simulated Vs Profiles

Considerations for the Modelling of Shallow Site Effects

- 1. Two different approaches
- 2. Linear viscoelastic model

- 3. $V_{s,min}$ is too high and the spatial resolution too coarse
- 4. Local site effects are captured to some extent

Approaches to Model Site Effects

- 3D/2D/1D Time-Domain Site-Response Analysis (SRA)
- 1D Frequency-Domain Site-Response Analysis
- Square-Root-Impedance (SRI) Method
- Site-Response Component of Ground-Motion Models (GMMs)

Question

How to use these approaches to adjust the simulated ground motion to account for shallow site effects (~ max. 100 m depth)? This adjustment has to...

- 1. Deal with two different simulation approaches (LF and HF)
- 2. Incorporate soil nonlinearity
- 3. Model actual site conditions (lower V_s and finer spatial resolution than in simulation)
- 4. Not double-count local site effects already captured in the simulation

Types of adjustment

Frequency-Domain Adjustment

Step 2. Using the fast Fourier transform

transform of $a_{sim}(t)$ to get the Fourier

simulation

(FFT) compute the discrete Fourier

Step 1. Obtain the acceleration time series, $a_{sim}(t)$, produced by the regional-scale simulation

Time-Domain Adjustment

Methods

	Method	Concept	Site-Characterization Data Required
ſ	1	Based on the site-response component of a GMM	<i>V</i> _{s30}
	2	Similar to Method 1 but includes a host-to-target Vs-profile adjustment to the reference condition	<i>V</i> _{s30}
Frequency-Domain Adjustment (SF)	3	Combines the SRI method with the nonlinear component of Method 1	V_s profile $ ho$ profile k_0
	4	Combines the theoretical 1D transfer function with the nonlinear component of Method 1	V_s profile $ ho$ profile D_{min} profile
Time-Domain Adjustment	5	Based on 1D time-domain nonlinear site-response analysis	V_s profile ho profile D_{min} Nonlinear parameters

Less data

More data

$$SF_1 = SF_{1,L} \cdot SF_{1,NL}$$

Host-to-target correction issue

$$SF_2 = RC \cdot SF_1$$

$$RC = \frac{I_{refHost}}{I_{sim}} = \frac{\sqrt{\frac{\rho_R V_{s,R}}{\overline{\rho}_{refHost} V_{s,refHost}}}}{\sqrt{\frac{\rho_R V_{s,R}}{\overline{\rho}_{sim} V_{s,sim}}}}$$

The site correction factor is applied to a reference condition consistent with the GMM

The amplification is still significant at low frequencies. Possible reasons:

- Quality of the reference host profile (Al Atik & Abrahamson method only works well for very stiff sites)
- Differences between the actual profile and the corresponding host profile (e.g., stronger basin effects present in the database used to develop the GMM for V_{s30,actual})

Lab-based Dmin (material damping) does not capture the actual damping in the field (material damping + wave scattering)

Method 5 – Time-Domain Adjustment

Comparison

Closing Remarks

- Five different methods to adjust hybrid broadband ground-motion simulations were presented and compared
- They represent a wide range of options (e.g., when different amounts of sitecharacterization data are available)
- Methods 1 and 2 only require Vs30. Method 2 represents an improvement over Method 1
- Methods 3 and 4 can be applied when a Vs profile is available. They consider an ergodic (i.e., general) treatment of nonlinear site effects
- Method 5 requires additional data (e.g., CPT, advanced lab testing), but involves a site-specific treatment of nonlinear site effects
- SF directly maps to AF over a wide range of vibration periods

Methods to Account for Shallow Site Effects in Hybrid Broadband Ground-Motion Simulations

Felipe Kuncar¹

Brendon Bradley¹, Chris de la Torre¹, Adrian Rodriguez-Marek², Chuanbin Zhu¹, Robin Lee¹

¹University of Canterbury, New Zealand ²Virginia Tech, United States

QuakeCoRE – DT1 Call | 27 July 2023