

Modelling Local Site Effects in Physics-Based Earthquake Ground Motion Simulations: Thesis Plan

Felipe Kuncar

Brendon Bradley Chris de la Torre Robin Lee

DT1 Call | 31/03/2022

Motivation

Ingredients of physics-based ground motion simulations:

spatial domain = kilometers

grid spacing \sim 100 m

minimum Vs \sim 500 m/s

Can we improve predictions using more advanced approaches?

Motivation

- Lack of validation studies on large datasets of events and quality SMS site information
- New Zealand is a good laboratory: multiple earthquakes and SMS sites

Past Validation Studies in NZ

Lee et al. (2020; 2022)

Approach: Empirical amplification factors

- Big portion of total variability inferred to result from systematic site effects
- Underestimation of the significant duration for softer sites
- Several sites showed systematic biases in SA prediction: site-specific complexities that are not captured using Vs30-based amplification factors

de la Torre et al. (2020)

Approach: 1D Site-response analysis

- Site-specific improvements: very soft sites or sites with large impedance contrasts near the ground surface
- Other 'general' sites did not exhibit consistent improvement using site-specific response analysis modelling

de la Torre et al. (2020)

11 Significant Events | 20 Sites

100 km

Lee et al. (2022, under review)

Thesis Plan

'Inference Spiral' of System Science (Jordan, 2015)

Validation of 1D Site-Response Analysis on a Nationwide Scale

Validation study	Number of earthquakes	Range of magnitudes	Number of stations	Number of ground motions	Intensity measures
de la Torre et al. (2020)	11	$4.7 \le Mw \le 7.1$	20	200	SA
Proposed study	> 400	$3.5 \le Mw \le 7.8$	> 50	> 2000	SA, PGV, CAV, AI, Ds575, Ds595

Under what conditions does 1D site-response analysis perform significantly better than the simplified empirical approach?

- Quality and quantity of site characterization data
- Complexity of the site
- Ground motion intensity, etc.

Objective 1: Methodology

VS

Objective 1: Methodology

Wotherspoon et al. (2015); Deschenes et al. (2018); Cox & Vantassel (2018); Stolte et al. (2021), etc.

Currently, 54 SMS sites with high-quality Vs profiles

- ~ 60% with CPTu (but some very shallow)
- ~ 80% with HVSR from microtremors measurements100% with HVSR from ground motion records

Canterbury Region: 29 Sites

Wellington Region: 14 Sites

Objective 1: Ground Motions

2021 New Zealand Ground Motion Database

Hutchinson et al. (2022, under review)

Significantly expanded the number of ground motions from the previous 2017 NZ Database:

Events with records x 45

Ground motions x 50

Objective 1: Ground Motions

Usable ground motion records at the sites considered

potential soil nonlinearity 2016 Kaikõura EQ 2011 Christchurch EQ 8 8 7 7 Å 6 6 ¥ 5 5 Crustal . Interface 4 Slab ٠ 10-2 10^{-1} 10⁰ 10^{1} 10² 10³ 10^{-4} 10-3 10^{0} Rrup (km) PGA (g)

Simulations: - Crustal EQs: Lee et al. (2021; 2022, in review; ongoing work) Interface and slab EQs: Mike Dupuis's ongoing work

Preliminary Results

Wellington Region

10

15

20

25

5.0

7.5 (u)

õ 10.0

12.5

15.0

17.5

SCPT test
SW testing

CPTu - McGann et al. (2015) CPTu - CPT Guide (2015)

V_s (m/s)

400

- Site-response model

200

UHCS | Vs30 = 390 m/s

SCPT test
SW testing
CPTu - McGann et al. (2015)
CPTu - CPT Guide (2015)

Site-response model

200

V_s (m/s)

Shear-wave velocity

400

Depth (m)

Shear-wave velocity

Soil Behaviour Type Index

15

i

2.5

5.0

റ് 10.0

12.5

15.0

17.5

2

3

gravell

2

10

Soil Behaviour Type Index

3

TAIS | Vs30 = 510 m/s

UHSS | Vs30 = 481 m/s

Preliminary Results

Moderate magnitude EQs $(5.0 < Mw \le 7.0)$ Lee et al. (2021; ongoing work)

Site	N° ground motions		
LRSS	9		
TAIS	11		
UHCS	14		
UHSS	10		

44

Next steps:

- More sites and events!
- Systematic trends at different sites
- Better capturing site amplification at longer periods while using 1D site-response analysis

Validation of 1D Site-Response Analysis including Uncertainty → PSHA

Sarah Neill's ongoing work:

Types of uncertainties in site-response analysis (based on Bradley, 2011):

Validation of 2D/3D Site-Response Analysis including Uncertainty

Objective 1 + Objective 2

19

Systematic identification of locations where 1D site-response analysis doesn't work well

Objective 3

Systematic validation of 2D/3D

models, including uncertainty

Parametric

Model complexity

Modelling Local Site Effects in Physics-Based Earthquake Ground Motion Simulations: Thesis Plan

Felipe Kuncar

Brendon Bradley Chris de la Torre Robin Lee

DT1 Call | 31/03/2022