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A time-averaged 30-m-depth shear wave velocity (VS30) map is developed for
New Zealand as a weighted combination of a geology-based and a terrain-based
model. A Bayesian updating process allows local VS30 measurements to control
model estimates where data exist and uses model estimates developed for other
parts of the world where local data are sparse or nonexistent. Geostatistical inter-
polation is performed on the geology-based and terrain-based models using local
VS30 measurements to constrain the model in the vicinity of data. Conventional
regression kriging is compared with a flexible multivariate normal (MVN)
approach that allows for arbitrary assumptions regarding measurement uncer-
tainty at each data location. A modification to the covariance structure in the
MVN application allows for more realistic estimates by reducing undesirable
extrapolation across geologic boundaries. The results of kriging and MVN
approaches are compared. The geology-based and terrain-based MVN models
are combined to produce a final model suitable for engineering applications.
The 100-m resolution map outputs are publicly available. [DOI: 10.1193/
121118EQS281M]

INTRODUCTION

VS30, the time-averaged vertical shear wave velocity in the uppermost 30 m, is widely
used in earthquake engineering research and practice. Owing to the expense and difficulty of
measuring VS30 directly, recent work has been devoted to developing VS30 models using
VS30-correlated proxy data. The work presented herein represents an attempt to incorporate
the best recent practices for modeling VS30 (e.g., Yong et al. 2012, Thompson et al. 2014,
Parker et al. 2017, Ahdi et al. 2017b) using both available proxy data and direct VS30 mea-
surements (with arbitrarily specified measurement uncertainty) within a statistical framework
that treats uncertainty as an essential model component and allows consistent incremental
improvements as new VS30 data are collected.

Others have applied methods similar to those presented here for mapping VS30 by proxy
methods, where continuous and readily available proxy data are correlated with VS30 mea-
surements and used to estimate VS30 in regions where direct measurements have not been
taken. Generally, the proxy data include geology and topographic data. First, studies from
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around the world are summarized, and then prior work in New Zealand (NZ) is highlighted,
with a focus on the additional contributions to be presented in the work herein.

Wills and Clahan (2006) developed a VS30 map for California based on surface geology.
Geology-based VS30 mapping is confounded by the fact that mapped geologic units are fre-
quently less than 30 m thick. Wills and Clahan (2006) handled this problem for alluvial basins
by assigning locations in California to “shallow” or “deep” basin categories on the basis of
areal extent: narrow valleys and locations near the base of steep mountains were assigned “shal-
low” categories, whereas extensive basins were assigned “deep” status. Wills and Clahan
(2006) also separated alluvial units into fine, coarse, and mixed/undifferentiated bins for better
VS30 discrimination. Wills and Gutierrez (2009) introduced a slope-dependent component to
VS30 modeling. Topographic slope is slightly correlated with VS30, at least for soil deposits,
because of the depositional characteristics. For example, the size of particles dropping out of
suspension in an alluvial depositional environment is correlated with flow velocity and, in turn,
the slope of the landscape. The range and complexity of surficial rock depositional mechanisms
renders this correlation virtually nonexistent for rock.

Building on the Wills and Clahan (2006) study, Thompson et al. (2014) developed a
regional VS30 map for California that added topographic slope-based modifications (Wills
and Gutierrez 2009, Allen and Wald 2007) to soil categories. Additionally, the well-
known regression kriging (RK) approach was applied to the mapping, bringing model pre-
dictions into agreement with measurements locally. The kriging uncertainty in this study can
be evaluated alongside the model predictions for a first-order, low-end assessment of
expected disparity between model and reality. Importantly, kriging uncertainty is entirely
a product of measurement locations and “globally” derived variogram, meaning that the
mapped uncertainty is not conditioned on individual geology-based polygons.

Lee and Tsai (2008) generated a VS30 map of Taiwan in a two-step process, first gen-
erating a correlation-based model for VS30 using standard penetration testing (SPT) blow
counts, then applying this model to a larger data set. The resulting model was kriged.
Wald et al. (2011) proposed a generalized framework for VS30 mapping, recommending
a hierarchal model with a topographic slope (being globally available) as the primary
proxy variable and generating individual linear slope-VS30 relations for significant geology
categories. They demonstrated the method by producing a map of Taiwan and employing
kriging to honor local observations.

Vilanova et al. (2018) developed a VS30 map for Portugal based on geology. Statistical
testing was performed on candidate geologic units to optimize discrimination. Spatial declus-
tering methods were evaluated but found to have non-negligible impact in only one of six
candidate geologic units. After eliminating nondiscrimating categories, only three distinct
geologic categories were used in the final model.

Ahdi et al. developed geology-based and topography-based VS30 models for Alaska (Ahdi
et al. 2017b) and the Pacific Northwest (Ahdi et al. 2017a). The methods employed were simi-
lar to Thompson et al. (2014), although Ahdi et al. did not incorporate any geostatistical meth-
ods. Ahdi et al. reevaluated the geologic classification process, and hence the final product
employs geologic categories that are distinct and generally more discriminating than the
Thompson et al. (2014) categories. Parker et al. (2017) developed VS30 estimates for Central
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and Eastern North America based on geology, topographic slope, and indicator variables to
indicate significant sedimentary basins and the extent of Wisconsin glaciation. Basins and past
glaciation were noted as having a strong correlation with observed VS30 values.

Yong et al. (2012) applied an automated digital elevation model (DEM)-based
16-category terrain classification scheme (Iwahashi and Pike 2007) to the problem of VS30
modeling. The terrain classification technique divides a map domain into bins based on
slope, then further subdivides each bin into categories on the basis of local convexity and
a local roughness measure. The results were used to generate worldwide VS30 maps. A
later comprehensive review of proxy-based VS30 measurements (Yong 2016) examined the
performance of this technique using newly available VS30 data in California. Another VS30
model for Taiwan (Kwok et al. 2018) also used terrain-based classifications as well as the
more common geology classifications and combined the two models in a weighted fashion.

In NZ, Cousins et al. (1996) compiled geotechnical site class estimates for all strong-
motion stations. The site class estimates were based on Standards New Zealand (1992).
The geotechnical data used to develop these estimates, however, was sparse or tentative
(e.g., based on geologists’ estimates without any invasive explorations). Most station infor-
mation, moreover, was assumed based on regional geology maps.

Destegul et al. (2009) developed a site amplification map for NZ based on geology maps.
The map was then validated by comparing map polygons against 687 accelerograph locations
where site class was available. (The method of site class assessment for these accelerograph
locations in Destegul et al. (2009) is unclear. The work is attributed to Cousins and is unpub-
lished; it may be a continuation of the Cousins et al. (1996) report wherein most site class
estimates were derived from geology maps.) Destegul et. al (2009)’s map was developed
before completion of the QMAP project (most recent all-NZ geologic map; GNS Science
2016) and therefore based on geologic data from several scales ranging from 1:25,000 to
1:1,000,000. Destegul et al. (2009) also made pragmatic assumptions about the nature of
soils confined in narrow valleys: class C was assigned wherever “soil units were narrow
and bounded on one or both sides by weak rock.” Abrupt geologic transitions were “buf-
fered” (e.g., by inserting a narrow region of class C between polygons of classes B and D).

Perrin et al. (2015) published the first VS30 map for NZ by assigning NZS 1170.5
(Standards New Zealand 2004) site class categories using QMAP categories. The resulting
map provided distinct ranges of VS30 corresponding to the well-known site categorization
scheme. The Perrin et al. (2015) map also took steps to account for varying VS30 at the
edge of geologic basins, applying ad hoc assumptions about lateral extents of basin
edges and the dip angle of rock beneath basins. Such decisions were fairly arbitrary by neces-
sity; e.g., dip angle assumption was driven in part by data resolution. The work drew exten-
sively on data for geology correlations with VS30 based on the detailed California data in
Borcherdt (1994).

APPROACH AND WORKFLOW

The present study incorporates many of the techniques applied by others in the prior work
that has been discussed, including geology-based, slope-based, and terrain-based proxy vari-
ables, and geostatistics for honoring local VS30 data. Our work builds on these methods but
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additionally adheres to a Bayesian framework for unifying first-order (prior) VS30 and uncer-
tainty (σ) estimates gleaned from models for other regions with field data in NZ. We also
apply more advanced geostatistical methods (Worden et al. 2018) than the typical RK
approach. Compared with previous VS30 models for NZ, which have only used geology
proxy variables, the present study adds slope and terrain proxy variables, Bayesian statistics,
and geostatistics.

The workflow is summarized in Figure 1 with a box for each incremental model devel-
oped. Every model assumes lognormal VS30 and is therefore completely specified by two
maps: a median VS30 map and a lognormal standard deviation (σ) map.

A geology-based model is developed by generating a simplified geologic map with cate-
gories consistent with Ahdi et al. (2017b) and applying their VS30 estimates from Alaska. A
terrain-based model is developed based on DEM-based “terrain categories,” derived from
first-order properties of the DEM (local slope, convexity, and texture; Iwahashi and Pike
2007). Terrain categories are generated for NZ and assigned VS30 values using the ter-
rain-based estimates of Yong et al. (2012). Each of these two “prior” models are updated
with VS30 data for NZ in a standard Bayesian framework with lognormal conjugate priors and
unknown standard deviation (Section 3.3 in Gelman et al. 2014). The geology-based model is
modified to incorporate weak correlations between topographic slope and VS30, similarly to
Thompson et al. (2014), Ahdi et al. (2017b), and Parker et al. (2017).

Figure 1. Relationships among various model components. Arrows indicate incremental model
refinements.
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Sample variograms are generated using the residuals corresponding to each of the two
constituent models, and theoretical variograms are fitted for forward prediction. Two geos-
tatistical interpolation methods are applied to each of the constituent models: conventional
RK and a multivariate approach (MVN; Worden et al. 2018) with a novel additional con-
tribution to automatically and intuitively reduce undesired extrapolation across geologic dis-
continuities. Finally, a “weighted”model is generated as a statistically weighted combination
of the MVN models.

DATA SOURCES

The information sources used for model development include an NZ geologic map, a
topographic map, and VS30 data, as described in the following.

SURFACE GEOLOGY AND TOPOGRAPHIC DATA

The geologic map, also referred to as QMAP (“quarter-million” for the map scale), is a
recent compilation of existing surface geologic maps for regions across NZ (GNS Science
2016). The data are in vector form, with coordinates indicating each corner of approximately
55,000 polygons, each with several metadata fields. Geologic boundaries (polygon edges) are
accurate to �250 m. The topographic data source is a DEM developed by LRIS NZ (Land-
care Research New Zealand 2010, Barringer et al. 2002) and is available at 25-m resolution.
We use the DEM resampled to more manageable 100 and 270-m resolutions for the terrain
and slope proxy variables, respectively.

VS30 DATA

The VS30 data are from three data sets, as shown in Figure 2: Kaiser et al. (2017), McGann
et al. (2017), and a compilation of recent surface wave–based field investigations in Canter-
bury. The word “data,” as opposed to “measurements,” is deliberate; most VS30 input data are
not from direct measurements. The most striking feature of Figure 2 is the lack of data over
most of the country; this is in part because much of NZ is sparsely populated, which has
obviated the need for VS30 measurements in most areas. The following paragraphs describe
each data set in turn, followed by the assumed measurement uncertainties. A complete tabular
listing of input VS30 data is provided in the online supplement.

Kaiser et al. (2017) compiled a list of VS30 values (measurements or estimates) for NZ
strong-motion stations. Along with VS30 measurements, qualitative quality rankings (ranging
from Q1= best to Q3=worst) were provided for each station. Q1 data include both well-
constrained surface wave–based methods and invasive methods. Q2 data may be based on
well-established local correlations, similar nearby sites, or well-constrained near-surface VS
profiles that do not necessarily reach 30 m in depth. Q3 values are based solely on estimates,
either from preexisting national scale maps (Perrin et al. 2015) or geologists’ estimates. We
do not use Q3 data for VS30 modeling here. (Most seismic stations’ VS30 estimates are in
category Q3 and hence not shown in Figure 2). A number of possible duplicate observations
were encountered in the Kaiser et al. (2017) data set, so a preliminary screening was imple-
mented in which duplicates (identified as VS30 points within 2 m of another observation) were
removed.
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McGann et al. (2017) used cone penetration testing (CPT) correlation-derived VS30

values (McGann et al. 2015) to produce a regional VS30 map for the Christchurch area.
For our purposes, these data were too numerous (by comparison with the data available
for the rest of NZ), and without downsizing would overwhelm the impact of data elsewhere.
Accordingly, the McGann et al. (2017) data were resampled from 7,402 points to 280 points
by overlaying a 1-km grid and selecting the nearest McGann data point to each gridpoint
(Figure 2). This decision was arbitrary but reasonable for the goals of the model development.

The “surface waves” data set refers to a compilation of VS30 data from several surface
wave analysis–based site investigations performed following the 2010–2011 Canterbury
earthquake sequence (Cox et al. 2011; Wood et al. 2011, 2017; Wotherspoon et al. 2013,
2016; Van Houtte et al. 2014; Teague et al. 2018). Cox et al. (2011) compiled a rapid pre-
liminary report of surface wave testing (multichannel analysis of surface waves (MASW))
performed in Christchurch after the 2010–2011 earthquake sequence along with inverted site
profiles from which VS30 estimates were obtained. Wood et al. (2011) and Wotherspoon et al.
(2013) performed passive and active surface wave testing at 13 strong-motion stations in and
near Christchurch city to obtain Vs profiles from which VS30 were obtained. VS30 values
reported in Wood et al. (2011) have been adjusted in the present work based on updated

Figure 2. (a) Data locations for all of NZ and (b) inset showing Canterbury region for detail.
McGann et al. (2017) data were downsampled based on closest proximity to an arbitrary 1-km
grid (white circles). Data labeled “Surface wave” (cyan circles) comprise several Canterbury-area
surface wave investigations enumerated in the text. The majority of Kaiser et al. (2017) are “Q3”
and are not used herein. Kaiser et al. (2017) Q2 (medium quality) and Q1 (highest quality) data
are shown as blue and yellow squares, respectively.
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analysis of the MASW dispersion curves (Wotherspoon, pers. comm., 2018). Van Houtte
et al. (2014) used VS30 values for seven hard sites in an investigation about the role of
local seismic attenuation (κ). The sites’ VS30 were inferred from surface wave–based methods
using frequencies ≥ 14 Hz, meaning that VS30 profiles could not be developed down to 30 m
and assumptions were used. Wotherspoon et al. (2016) report seven VS30 values derived from
surface wave–based site Vs profiles measured in conjunction with work by Cox et al. (2014).
Deschenes et al. (2018) provide these seven plus two additional Vs profiles. Wood et al.
(2017) evaluated liquefaction case histories at a number of sites with well-characterized
Vs profiles obtained from surface wave–based methods. Not all VS30 profiles extended to
30-m depth; in a few cases where the profiles were within a few meters of 30 m,Wotherspoon
(pers. comm., 2018) extended the profiles for VS30 estimates. Teague et al. (2018) developed
Vs profiles at 14 Christchurch sites with deep and complex interbedded geology. Many can-
didate profiles were generated from the experimental dispersion curves to study epistemic
uncertainty associated with the inversions.

MEASUREMENT UNCERTAINTY

In the subsequent VS30 model development, we use measurement uncertainty quantified
as σmeas:, assuming lognormal distributions. Kaiser et al. (2017) give approximate subjective
uncertainty quantities of 10% and 20% for Q1 and Q2 data, respectively. Accordingly, we
assigned lognormal standard deviations for measurement uncertainty (σmeas:) of 0.1 and 0.2,
respectively. All other data are assigned σmeas: ¼ 0.2. These uncertainties are broadly con-
sistent both with the uncertainties provided by Kaiser et al. (2017) and the general findings of
Moss (2008) for VS30 determined from surface wave–based measurements and geology
correlations.

GEOLOGY-BASED AND TERRAIN-BASED MODELS

The development of the geology-based and terrain-based models (in the context of
Figure 1) is summarized in Figures 3 and 4 (VS30 and σ, respectively). The individual
maps/panels shown in these figures are discussed in detail in the subsequent subsections
as they arise. These maps show only the Canterbury region for clarity; the models for all
of NZ are available in the online supplement.

GEOLOGY-BASED PRIOR MODEL

To assign geology-based median VS30 and uncertainty estimates, all map locations first
need to be assigned one of a finite number of geologic categories, “flattening” the multi-
dimensional textual metadata underlying the geology map into a simpler, “one-dimensional”
map (Figure 5a). The geology categories of Ahdi et al. (2017a,b) are selected so that direct
comparisons can be made, for straightforward Bayesian updating, and because the geology
categories chosen by Ahdi et al. are more specific and discriminating than in many similar
studies (and hence more flexible for our application). Ahdi et al. generated VS30 maps for the
Pacific Northwest region of North America (Ahdi et al. 2017a) and Alaska (Ahdi et al.
2017b). The categories are enumerated in Table 1.

The 18 geology categories of Ahdi et al. are followed with two exceptions. First, cate-
gories G02 and G03 (Fraser river) are discarded because of their regional geologic
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Figure 3. Illustrative regional (Canterbury) VS30 maps for various stages of model development:
(a) prior geology model; (b) prior terrain model; (c) posterior geology model with slope-based
adjustment; (d) posterior terrain model. Comparison of prior to posterior models: (e) ratio of panel
(c) to panel (a); (f) ratio of panel (d) to panel (b). Point overlays in (c) and (d) show VS30 mea-
surements used for updating.
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Figure 4. σ (sigma) maps for various stages of model development: (a) prior geology model;
(b) prior terrain model; (c) posterior geology model with slope-based adjustment; (d) posterior
terrain model. Comparison of prior to posterior models: (e) difference between panels (c) and (a);
(f) difference between panels (d) and (b).
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specificity. Second, categories G07 and G13 (fine and coarse floodplain deposits, respec-
tively) are merged because of the difficulty in distinguishing between the two on the
basis of the NZ surface geology metadata. Category G07 is not populated, and all floodplain
deposits are lumped together into category G13. Merging these categories is likely more
appropriate than retaining the fine/coarse distinction, even if it were practical: Wills and
Gutierrez (2009) discuss the reasons that grain size at the ground surface is not generally
correlated with grain size over the entire uppermost 30 m for young alluvial deposits.

The categorization process is implemented primarily using a text-based search. Extensive
and iterative examination of the metadata fields is performed manually, and five metadata
categories are chosen based on the richness of information they carry related to VS30. The
first-order geology-based VS30 model—using VS30 and σ values from Ahdi et al. (2017b)—is
shown in Figures 3a (VS30) and 4a (σ). The values assigned to these models correspond to the
“prior” columns in Table 1.

TERRAIN-BASED PRIOR MODEL

Iwahashi and Pike (2007) proposed a method of using a DEM to automatically generate a
map of terrain categories that roughly correlate with surface geology, geomorphology,
or both. The method relies on successive discrimination based upon three spatial fields:

Figure 5. (a) Map of geology categories from Ahdi et al. (2017a and 2017b) as applied to NZ.
(b) Map of terrain categories from Iwahashi and Pike (2007) as applied to NZ. Terrain colors are
selected for direct comparison with Yong et al. (2012).
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topographic slope, local convexity, and texture. The approach follows a “nested-means”
logic (i.e., the categories are divided first on the basis of comparing local slope to mean
slope for the entire map domain and then subdivided by convexity and texture). It can
be used to generate terrain classes composed of 8, 12, or 16 unique categories, with 12-
class and 16-class discrimination achieved by repeated subdivision of the regions with
low topographic slope. We followed Yong et al. (2012) in choosing the 16-category imple-
mentation; this decision is justified presently in the context of the Bayesian updating step.
One advantage of the Iwahashi and Pike (2007) method (in contrast to other similar classi-
fication schemes) is that it is “unsupervised,” i.e., no decisions need be made regarding the
values (slope, convexity, texture) defining boundaries between terrain classes. One downside
of the approach is that these boundary values are based on computing the mean for the map
domain, yielding different maps for different domains. This restriction implies that applica-
tion-specific calibrations are important.

We generated rasters for the Iwahashi and Pike (2007) categories in NZ using the DEM
resampled at 100 m (our final target map resolution). (The resolution of the final product is
not 100 m in the strictest sense, but in a “neighborhood average” sense. Slope and convexity
are both computed for a 9-cell moving window, and texture is computed using a 10-cell
radius.) By contrast, the worldwide classification by Iwahashi and Pike (2007) used the
1-km resolution Shuttle Radar Topography Mission DEM (SRTM30; Farr et al. 2007).
Because of both the DEM resolution and the domain-dependent nature of the algorithm,
our categories do not precisely match the Iwahashi and Pike (2007) SRTM30-derived

Table 1. Geology categories with n= number of observations per category and prior and
posterior (slope adjusted) VS30 and σ values for each

ID Description n

VS30 (m/s) σ

Prior Posterior Prior Posterior

G01 Peat 9 161 163 0.52 0.30
G04 Artificial fill 11 198 273 0.31 0.28
G05 Fluvial and estuarine deposits 11 239 200 0.87 0.44
G06 Alluvium and valley sediments 25 323 271 0.36 0.24
G08 Lacustrine (including glaciolacustrine) 0 326 326 0.14 0.50
G09 Beach, bar, dune deposits 70 339 204 0.65 0.23
G10 Fan deposits 5 360 247 0.34 0.34
G11 Loess 4 376 473 0.38 0.35
G12 Glacigenic sediments (drift and outwash) 0 399 399 0.30 0.50
G13 Flood deposits 252 448 197 0.43 0.20
G14 Glacial moraines and till 0 453 453 0.51 0.51
G15 Undifferentiated sediments and sedimentary rocks 0 455 455 0.55 0.55
G16 Terrace deposits and old alluvium 2 458 335 0.76 0.60
G17 Volcanic rocks and deposits 0 635 635 0.99 0.99
G18 Crystalline rocks (igneous and metamorphic) 4 750 691 0.64 0.45
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categories for NZ. We expect this to be of trivial consequence, both because of the roughly
scale-invariant (fractal) features of landforms and because of subsequent reductions in epis-
temic uncertainty owing to the Bayesian updating process in the next step (i.e., the applica-
tion-specific calibration).

The newly generated 100-m resolution terrain category map is shown in Figure 5b. The
Iwahashi and Pike (2007) categories are listed with short descriptions borrowed directly from
Yong et al. 2012 in Table 2. It must be emphasized that these are mnemonic labels affixed to
quantities that are purely statistical in nature; the labels do not carry strong geologic meaning.
VS30 and σ values from Yong et al. 2012 (see “Prior” columns in Table 2) are assigned to their
corresponding categories from Figure 5b, analogously to the geology-based model, to pro-
duce the prior terrain-based model (Figures 3b and 4b).

BAYESIAN UPDATING USING NZ DATA

This section describes the development of posterior models, as shown in the second row
of Figure 1. Among the desirable aspects of Bayesian analysis are its amenability to simple
verbal descriptions, its agnosticism of the distinction between subjective beliefs and objective
data (allowing for a crude “better-than-nothing” formulation of prior beliefs encoded as wide
or noninformative prior distributions), and its tendency to demand an explicit accounting of
all statistical assumptions being made. Thorough discussions of the semantics of Bayesian
theory and analysis are found in D’Agostini (2003) and McElreath (2015). In this work,

Table 2. Terrain categories with n= number of observations per category and prior and
posterior (slope adjusted) VS30 and σ values for each

ID Description n

VS30 (m/s) σ

Prior Posterior Prior Posterior

T01 Well-dissected alpine summits, mountains, etc. 0 519 519 0.35 0.50
T02 Large volcano, high block plateaus, etc. 0 393 393 0.42 0.50
T03 Well-dissected low mountains, etc. 0 547 547 0.47 0.50
T04 Volcanic fan, foot slope of high block plateaus, etc. 0 459 459 0.35 0.50
T05 Dissected plateaus, etc. 2 402 324 0.31 0.41
T06 Basalt lava plain, glaciated plateau, etc. 7 345 301 0.28 0.31
T07 Moderately eroded mountains, lava flow, etc. 3 388 536 0.42 0.38
T08 Desert alluvial slope, volcanic fan, etc. 3 374 515 0.32 0.38
T09 Well-eroded plain of weak rocks, etc. 4 497 284 0.35 0.36
T10 Valley, till plain, etc. 6 349 317 0.28 0.33
T11 Eroded plain of weak rocks, etc. 2 328 267 0.27 0.40
T12 Desert plain, delta plain, etc. 0 297 297 0.29 0.50
T13 Incised terrace, etc. 15 500 217 0.50 0.25
T14 Eroded alluvial fan, till plain, etc. 8 209 242 0.17 0.31
T15 Dune, incised terrace, etc. 166 363 199 0.28 0.21
T16 Fluvial plain, alluvial fan, low-lying flat plains, etc. 170 246 202 0.22 0.21
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Bayesian updating is performed on both the geology-based and terrain-based models pre-
sented in the previous section. Since Bayesian updating is intuitive, the updating is described
here at a high level first. The next section discusses some important implementation details.

Bayesian Updating Summary

To facilitate comparison with the prior models, the ratio of the posterior to prior mod-
els’ VS30 estimates is presented in Figure 3e and 3f. (Figure 3c and 3e refers to the posterior
geology with slope modification, discussed subsequently; this is nearly the same as the
posterior geology without slope modification, which is omitted to save space. The differ-
ence between the two is trivial enough to disregard momentarily.) The greatest changes
to the geology model resulting from the updating process are in the floodplain deposits
(category G13) beneath Christchurch city, where VS30 data are abundant and generally
lower than for the comparable soil units from Ahdi et al. (2017b) in Alaska. The σ
maps corresponding to the posterior geology-based and terrain-based models are shown
in Figure 4c and 4d.

The median and standard deviation of each category’s prior and posterior VS30 distribu-
tions are concisely summarized alongside the data in Figures 6 (geology) and 7 (terrain).
Here, the gray circles represent the NZ VS30 data and are plotted with transparency and
a small horizontal “jitter” to reduce overplotting. The red markers and lines indicate the
prior model median and �1 standard deviation. The blue markers and lines represent the
posterior model median and �1 standard deviation. The prior and posterior median
(VS30) and standard deviation (σ) correspond to the VS30 and σ values in the maps in Figures 3
and 4.
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The general behavior illustrated in Figures 6 and 7 can be summarized as follows: If the
prior model and the data are in stark disagreement, the posterior model represents a “com-
promise” between the data and prior model, and a larger posterior σ reflects this underlying
uncertainty. By contrast, if the NZ VS30 data are tightly clustered around the prior prediction,
the posterior σ will tend to be lower than the prior σ to reflect the additional confidence
conferred on the model by the data. This can be seen in Figure 4e and 4f. Although
much of the map area is negative (indicating a reduction in uncertainty from the prior to
posterior models), not every category shows a reduced σ. These are categories where NZ
data were sparse or not in good agreement with the prior VS30 values from Ahdi
et al. (2017b) or Yong et al. (2012).

The primary difference between Figure 3e and 3f and between Figure 4e and 4f is the
lower absolute value in Figures 3f and 4f. This shows that prior distributions were—at least in
the Canterbury region—in better agreement with NZ data for the terrain-based VS30 model
(Yong et al. 2012) than for the geology-based model (Ahdi et al. 2017b). This might suggest
that the geology of California is more similar to NZ than the geology of Alaska. Alternately,
or additionally, it might simply demonstrate that terrain-based VS30 estimation is inherently
less subjective than geology-based estimation.

In the course of developing the terrain-based model, the question arises as to whether the
16-category implementation of Iwahashi and Pike (2007) is superior to the 12-category or
8-category options. In particular, there is the concern of whether or not a 16-category model
is “overfitting” available data by comparison with a comparable 12-category or 8-category
model. We decided to use 16 categories for two reasons. First, this choice simplifies the
updating process. Because Yong et al. (2012) used 16 categories, deviating from this choice
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would require us to lump the Yong categories together, introducing another form of epistemic
uncertainty related to the categories’ spatial distributions and sampling distributions in
California and NZ. The second reason for using 16 categories is that it offers the best
predictive power given the quantity of data available and its distribution across terrain
categories. The motivation for using less than 16 categories would arise only if the
8-category and 12-category schemes result in fewer sparsely populated categories. On
the contrary, this is not the case. The Iwahashi and Pike (2007) categories are numbered
in order of decreasing topographic slope, and—because of various clustering influences
already discussed—the steep categories (generally mountainous/rocky) tend to be more spar-
sely populated than the shallow categories (generally low-lying/soil). The result of the inter-
action of these various statistical biases is that the 16-category implementation gives superior
discrimination in flatter regions, where VS30 data are plentiful, without splitting the data
within any bins that are sparsely populated in the 8-category or 12-category versions.

Bayesian Implementation Details

The preceding section presented the Bayesian updating process at a high level; this sec-
tion contains details of the implementation that are useful for replicating our model devel-
opment, including our application-specific implementation choices. This discussion adheres
to the notation in Gelman et al. (2014, pp. 67–69).

The updating presumes normally distributed data (i.e., lnðVS30Þ is normal) with a con-
jugate prior distribution and unknown variance (σ2). Two application-specific decisions are
included in the discussion that follows. The first relates to the relative weighting between the
prior and the data; the second relates to an arbitrary minimum threshold σ applied before the
updating process to avoid overfitting caused by clustered observational data.

A transformation of variables is required to perform lognormal updating using the pro-
cedure for normal distributions from Gelman et al. (2014). Each lognormal distribution is
completely specified by μ (the mean of lnVS30) and σ (lognormal standard deviation). σ is
updated assuming a scaled inverse-chi-squared (Inv� χ2) marginal posterior density.

As discussed, prior distributions are selected for each category using the μ and σ values
reported in Ahdi et al. (2017b) for Alaska and Yong et al. (2012) for California (Tables 1
and 2, respectively). That is to say, we view the conclusions of Ahdi et al. (2017b) and Yong
et al. (2012) (and VS30 data from Alaska and California) as sound bases for first-order esti-
mates of VS30 in NZ, given no other data.

For brevity, we have relegated a summary of the mathematical implementation (Gelman
et al. 2014) of the approach in the online supplement. In our implementation we made
application-specific assumptions about the relative weighting between the prior and data.
These assumptions are reflected in the choice of initial values for the integer-valued counter
variables ν0 and κ0 (we set νi ¼ κi, which is common but not required). In Gelman et al.
(2014), κ0 ¼ ν0 represents the “number of observations” contained in the prior. Quotation
marks are used to emphasize that the prior is not generally a uniform data set but may be a
degree of belief or a combination of qualitative and quantitative elements. The meaning of κ0
and ν0 is a step removed from reality: these parameters do not reflect the process applied by
Ahdi et al. (2017b) in its entirety, nor do they directly represent the number of physical VS30
measurements in their work. (Indeed, the clustering of VS30 data may mean that unique values
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of κ0 and ν0 should be chosen for each geologic category, but this is not explored further.) In
any case, the choice of κ0 and ν0 represents a subjective decision about the appropriateness of
applying Ahdi et al. (2017b) models in an NZ context. This “appropriateness” reflects issues
of an epistemic nature, such as the quality of VS30 data used in the prior study, the authors’
choices of geologic grouping criteria, the degree to which NZ and California geologic depos-
its are essentially similar or different, and regional or discipline-specific differences in the
naming and classification of deposits by various geologists.

We choose κ0 ¼ ν0 ¼ 3 for this application. A geologic category with n ¼ 3 datapoints
in NZ would therefore give a posterior distribution based on equal weighting between the
data and the prior distribution. Considering the available data, this choice yields a reasonable
compromise between the prior distributions and the data (Figures 6 and 7).

A second application-specific decision is made regarding the σ values in the priors. Given
that the observational data are sparse and clustered, there is the risk that posterior σ is artifi-
cially low because of the influence of clustered VS30 data when the data may not be repre-
sentative of the entire map domain. To address this, we impose an arbitrary minimum value
of 0.5 (natural log scale) on the model priors before applying the updating algorithm. The
intent of this threshold σ constraint is to avoid overfitting in categories where VS30 data are
few, but of similar value (e.g., terrain category T05 in Figure 7). The results of this can be
seen in category groupings that are poorly constrained, such as in geology categories G08 and
G12 in Figure 6 as well as terrain categories T01 through T05 and T12 in Figure 7. (Prior
distributions shown are those from Tables 1 and 2; the minimum σ ¼ 0.5modification is only
visible in the posterior distributions.)

TOPOGRAPHIC SLOPE-BASED MODIFICATION TO POSTERIOR
GEOLOGY MODEL

Following Thompson et al. (2014), Ahdi et al. (2017b), and Parker et al. (2017), the
geology-based VS30 model can be refined by capturing any slope dependence in the observed
VS30 of the various geologic groupings. To examine the slope-VS30 correlations, VS30 values
were plotted against topographic slope, computed (Horn 1981) at both 9 and 30-arcsec reso-
lutions for direct comparison with Thompson et al. (2014). (Actual resolutions of the 9 and
30-arcsec maps are about 270 and 900 m, respectively; north-south arcseconds and east-west
arcseconds are not similar in NZ.) Thompson and Wald (2012) found that the correlations
associated with the coarser 30-arcsec resolution were slightly better than for 9 arcsec, and
Thompson et al. (2014) postulated that this might arise because of spurious elevation corre-
lations from nongeomorphic features (vegetation and built infrastructure) resolved at the finer
resolution in California. By contrast, in NZ, the finer resolution correlations are the same or
slightly better than those for the coarser resolution, and we postulate that the scale of NZ’s
built environment is unlikely to impact these correlations in the same way as California. Our
slope-VS30 correlation is based on 9-arcsec slopes.

Figure 8 shows the correlations of 9 arcsec (270 m) slope with VS30 for four geology
categories. Standard least-squares fitting and likelihood testing yield linear relationships
along with the �2 standard deviations (95% confidence) bounds shown as dotted lines.
Only the geology categories with definitively positive trends are shown, and only these
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categories are selected for slope-dependent modification (i.e., the remaining geology
categories are modeled with no slope dependence).

The limits of the linear fits in Figure 8 are shown in Table 3. These upper and lower slope
(∇) limits were selected to define continuous piecewise-linear functions (after log transfor-
mation) defined by ð∇0,VS30,0Þ and ð∇1,VS30,1Þ:

EQ-TARGET;temp:intralink-;e1;62;323 lnVS30 ¼

8>><
>>:

lnVS30,0 ∇ ≤ ∇0

lnVS30,0 þ lnð∇∕∇0Þ
lnð∇1∕∇0Þ ln

�
VS30;1

VS30,0

�
∇0 < ∇ ≤ ∇1

lnVS30,1 ∇1 < ∇
(1)

from which any value of slope yields a single VS30 value that is constrained not to extrapolate
beyond the range of observed data. A more sophisticated approach might use logistic curves
rather than piecewise-linear and might expend more effort in determining whether the highest
and lowest observed slopes are the “best” places to define the inflection points of the func-
tion, but we view our approach as simple, objective, and effective.
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Figure 8. Slope dependence of geology-based VS30 model. Slope resolved from 9 arcsec
(∼270 m) DEM. Only the four geology categories with positive trends are shown. Dotted
lines indicate �2 standard deviations (95% confidence bounds) on slope fit.

Table 3. Slope adjustment details for categories G04, G05, G06, G09

ID ∇0 ∇1 VS30,0 VS30,1 σf ð∇Þ

G04 0.0141 0.0596 242 418 0.14
G05 0.0020 0.0452 171 228 0.31
G06 0.0004 0.1316 252 275 0.24
G09 0.0003 0.1171 183 239 0.22
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In Bayesian parlance, the application of slope correlations to the model is another
instance of “updating,” in which a model is improved based on the use of data that were
not accounted for beforehand. The posterior VS30 predictions are given by the piecewise-
linear trends.

The results of slope-based correction represent a small change from the posterior geology
model (by comparison with the prior geology model; compare σ values in Table 3 with those
in Table 1). The slope-based VS30 and σ maps are visually indistinguishable from the poster-
ior geology model, so only the log of the ratio of the two models’ median VS30 predictions is
presented here (Figure 9). The slope-updated geology model is shown in Figures 3c (VS30)
and 4c (σ). Hereafter, we refer to this model as simply the “geology-based” model.

COMPARING GEOLOGY-BASED AND TERRAIN-BASED MODELS

Quantitative comparisons of the two posterior model predictions are presented in
Figures 10 (mapped prediction comparison for all NZ) and 11 (per-datapoint residual com-
parison). In the map-based prediction (Figure 10), it is evident that the places where the
models disagree most (e.g., the volcanic Taupo and Rotorua area in the central North Island,
indicated by a box in Figure 10) are places characterized by unique surface geology and
geomorphology, where there is consequently a unique pairing of geology and terrain cate-
gories. The model can benefit from data in these locations.

Figure 11 shows normalized geology and terrain model residuals ζ on the x and y-axes,
respectively:

Figure 9. Ratio of slope+geology model (Figure 3c) to posterior geology model (not shown)
median estimates. Note the small range on the graphic scale indicating a much smaller model
change by comparison with the posterior geology update.
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Figure 10. Map comparing median VS30 for posterior geology-based and terrain-based models.
The Taupo and Rotorua region (boxed) is an example of a region with unique interaction between
the geology-based and terrain-based categories that may merit prioritization for future field
investigations.

Figure 11. Scatterplot comparing VS30 residuals for posterior geology-based and terrain-based
models. Colored by VS30.
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EQ-TARGET;temp:intralink-;e2;41;640ζi ¼
lnVS30obs:,i � lnVS30pred:,i

σi
(2)

σi values correspond to the values in Figure 4c and 4d. The residuals are roughly symme-
trically scattered across the 1:1 line, suggesting that there is no systematic advantage of the
geology-based model over the terrain-based model, or vice versa, after Bayesian updating.
Coloring of the points is by measured VS30 and highlights some biases in individual cate-
gories, particularly rock categories, which are poorly represented.

GEOSTATISTICS APPLICATION TO POSTERIOR MODELS

The geology and terrain models developed in the previous section predict VS30 as func-
tions of surface geology, local topographic slope, and terrain proxy variables. A shortcoming
of these models is that they do not offer improved predictions in the vicinity of existing
measurements. The tool for addressing this issue is geostatistics. Two geostatistical
approaches are applied to the geology and terrain models in this section. The first and simpler
of the two is regression kriging (RK). The second is the so-called “multivariate normal”
(MVN) method (Worden et al. 2018). Both methods are presented and discussed for com-
parative purposes; the MVN approach is ultimately chosen as the superior method for reasons
discussed presently.

In the following sections, first, a concise review is given of the broad aspects of geos-
tatistical approaches, wherein quantifiable geospatial phenomena are modeled as stationary
random processes, and the parameterization (i.e., variance and autocorrelation) of the sta-
tionary random processes are inferred from variogram analysis. Next, the aspects of the
MVN approach that depart from kriging, and its advantages for this work, are highlighted.
Aspects of variogram and correlation function selection are discussed in the context of the
VS30 map. The results of applying both RK and MVN are presented. The problem of inter-
polating/extrapolating residuals for a lognormal process such as VS30, which can result in
unreasonably high VS30 estimates in some situations, is discussed. Finally, we present
two unique approaches we implemented to ameliorate these issues in a more-or-less auto-
mated way that requires few subjective decisions for implementation.

PRELIMINARIES

This discussion follows notation from Diggle and Ribeiro (2007). The most common
assumption underlying geostatistical methods is that spatial fluctuations in an earth science
system (e.g., VS30) can be modeled as a Gaussian random process, SðxÞ, a 2-D function
wherein a set of observations Sðx1,… xnÞ for n locations x1,… xn is assumed to be
drawn from a multivariate Gaussian (normal) distribution. A Gaussian random process is
defined completely by its mean function μðxÞ ¼ E½SðxÞ� and its covariance function
γðx, x 0Þ ¼ CovfSðxÞ, Sðx 0Þg. If the mean is constant and the covariance structure is formu-
lated solely as a function of distance (i.e., μðxÞ ¼ μ and γðx, x 0Þ ¼ γðuÞ where u ¼ x� x 0),
then the process is known as the special case of a stationary random function (SRF). Usually,
SRF are also assumed to be isotropic, i.e., γðuÞ ¼ γðjjujjÞ ¼ γðuÞ where jj · jj designates
Euclidean distance. The variance of an SRF is constant: σ2 ¼ γð0Þ. Hereafter, we discuss
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only functions of scalar u rather than vector difference u, as our application assumes isotropy
as is typical for regional applications (e.g., Thompson et al. 2014).

For the stationary case, the variogram function is an alternative representation of the covar-
iance function: Vðx,x 0Þ ¼ 1

2VarfSðxÞ � Sðx 0Þg. This reduces to VðuÞ ¼ σ2f1� ρðuÞg, where
ρðuÞ ¼ γðuÞ

σ2
is the correlation function, again for the stationary case. The correlation function is

1 for u ¼ 0 (for the typical application where the nonspatial component of randomness is zero)
and decreases monotonically to approach zero asymptotically with increasing u.

The variogram is useful both for interpreting observed spatial processes and for generat-
ing predictions using models with SRF. The aforementioned formulation is known as the
theoretical variogram. For using observational data to parameterize a geostatistical model,
the sample variogram or empirical variogram can be obtained and then used to guide selec-
tion of the theoretical variogram. Observational data Y are assumed to be of the form
Yi ¼ SðxiÞ þ Zi, where Zi are mutually independent and identically distributed with zero
mean and variance τ2. The sample variogram is as follows:

EQ-TARGET;temp:intralink-;e3;62;458VYðuijÞ ¼
1

2
E½ðYi � YjÞ2� (3)

The functional form for fitting a theoretical variogram is the following:

EQ-TARGET;temp:intralink-;e4;62;404VYðuÞ ¼ τ2 þ σ2f1� ρðuÞg (4)

This formulation is more general than the one previously introduced, with the addition of the
τ2 term.

The intercept, τ2, is known as the nugget variance. It represents the nonspatial com-
ponent of randomness in the process, requiring a dual interpretation of physical meaning,
which we discuss presently to contrast conventional kriging with MVN. σ2 is the signal
variance. The asymptotic value, τ2 þ σ2, is known as the sill and is the variance of the
observed process YðxÞ. For the common special case of τ2 ¼ 0, the sill is equivalent to
the signal variance. The range of the variogram is the distance u beyond which there is
no change in VðuÞ.

EMPIRICAL VARIOGRAMS

Two theoretical variograms, one each for the geology-based and terrain-based models,
are selected by fitting to empirical data. One of the simplest and most common functional
forms is chosen for the theoretical variograms, the exponential model:

EQ-TARGET;temp:intralink-;e5;62;195VðuÞ ¼ exp

�
� u
ϕ

�
(5)

where ϕ, the range or shape parameter, is measured in units of distance. The practical range,
the value of u for which ρðuÞ ¼ 0.05, is approximately 3ϕ (Diggle and Ribeiro 2007).

The empirical variograms here are produced with normalized residuals (ζ i, Equation 2)
in lieu of observations SðxiÞ. Normalization ensures homoscedasticity of the residuals
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(e.g., Jayaram and Baker 2009), which is necessary to ensure the geostatistical assumption of
Gaussian stationarity.

Because of the highly clustered nature of the available VS30 data, we explore several
subsets of the data to assess the sensitivity of the fitted theoretical variogram to the data
underlying the empirical variogram. The selection of subsets is motivated by a hypothesis
that the large scale and relative spatial uniformity of the Canterbury plains—the largest allu-
vial deposit in NZ—may yield a variogram with a range that is longer than appropriate for
other geographic regions. Thus we examine subsets with various degrees of exclusion of VS30
data from Christchurch or Canterbury. These are summarized in Table 4.

Preliminary examination of the empirical variograms led us to conclude that the geology
model yielded fairly “well-behaved” variograms, while the terrain model variograms were
considerably less smooth. We postulated that since the geology model incorporates continu-
ously varying slope correction functions for a few hand-selected geologic categories, whereas
the terrain model subdivides regions based on discrete slope bins using the Iwahashi and Pike
(2007) method, the latter might show some arbitrary stochasticity in the pairwise empirical
variogram ordinates, particularly in categories T15 and T16 (which are the most prevalent in
the Canterbury plains and other wide alluvial basins). The terrain subsets were modified by
removing all points from terrain categories T15 and T16, and the resulting theoretical fits
were improved.

The final selections for the geology-based and terrain-based model variograms are sum-
marized in Figure 12. For each of the five subsets, a logarithmically spaced binning scheme
was chosen and pairwise variogram ordinates were averaged within each bin to generate an
unbiased estimator of the theoretical variogram. The 95% confidence intervals obtained by
bootstrapping are shown for each bin. The judgment-based weighting factors shown in
Table 4 were used to fit one final exponential variogram each to the geology-based and
terrain-based models by weighted least-squares minimization (Pebesma 2014). Notably,
inspection of the plots reveals that the variogram is fairly insensitive to the data subsetting
schemes we evaluated. The effective ranges for the geology and terrain variograms are 4.2
and 3.0 km, respectively. We note that since the variograms are calibrated to the normalized
model residuals their differences are not necessarily attributable to physical meaning.

KRIGING

“Predicting” unobserved values of a spatial process on the basis of geostatistics entails
interpolating the observed values with interpolation weights derived from the variogram and

Table 4. Data subsets used for variogram fitting

Subset Description n Weighting

GS1 Kaiser et al. (2017) Q1 and Q2; no Canterbury data 49 0.5
GS2 Kaiser et al. (2017) Q1 and Q2 and surface wave–based data 127 0.25
GS3 McGann et al. (2017) data (resampled to 1 km) 266 0.25
TS1 Same as GS1 but with terrain categories T15 and T16 removed 29 0.5
TS2 Same as GS2 but with terrain categories T15 and T16 removed 42 0.5
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assuming that the mean of the process tracks the observed values. This process is known as
kriging. RK (e.g., Thompson et al. 2014) is an approach that makes the stationarity assump-
tion useful for a wider variety of problems in which the model mean μ ¼ μðxÞ is not constant
across the problem domain. For RK, consistent with variogram development, the kriging is
done on normalized observation residuals, ζi, assuming that the residual surface is the mean
surface of an SRF.

The kriged geology-based and terrain-based VS30 maps are shown in Figure 13. While
the new VS30 estimates appear reasonable in general, we wish to highlight one location where
this is not the case: a datapoint in Rakaia (identified by a box in Figure 13a). Here, the
geology model predicts unrealistically high VS30 values because a high-valued observation
(presumably reflective of loess deposits, category G11) appears to be located near a geologic
boundary on a lower-valued polygon (G06 or G13) yielding a higher normalized residual

Figure 12. Theoretical variogram selection for (a) geology-based models and (b) terrain-based
models.

Figure 13. The kriged VS30 maps for the (a) geology-based and (b) terrain-based models. An
example of potentially inappropriate extrapolation across geologic boundaries is visible in the
Rakaia area (boxed).
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than may be appropriate. The smoothed residual surface is multiplicative rather than additive,
owing to the lognormal assumption, and consequently exerts a great influence over the area.
(A tiny region in the vicinity of this error is colored gray, indicating the color scale is
“clipped,” i.e., the model predicts a median VS30 in excess of 1,000 m/s.)

This issue is exemplary of geostatistical problems that may occur wherever observational
data happen to be located on the “wrong side” of a high-contrast geologic boundary (between
cemented loess and unconsolidated sediments in this example or between rock and soil gen-
erally). In the next section, we propose a novel method of handling such errors that is effec-
tive at reducing undesirable cross-boundary extrapolation in lieu of the time-consuming and
subjective alternative approach (i.e., manually identifying and relocating problematic obser-
vations or map boundaries wherever this issue arises).

The kriged uncertainty (σ) maps are shown in Figure 14 and, as expected, approach zero
near measurements because the nugget of the variogram is zero. The “background” σ, in
regions where there are no nearby observations, reverts to the input σ (i.e., Figure 4).

The kriged residual in Figure 14 suggests that the baseline model may systematically
underpredict VS30 in the Canterbury plains, west of Christchurch city. This is not unexpected;
in the simplified geology categories (Figure 5a), there is no discrimination between the sur-
face geology beneath Christchurch and that in the plains to the west. But the geology of the
coastal basin consists of interbedded layers from alternating deposits of river/alluvial and
marine deposits, which may suggest that surface geology alone (presuming it is representa-
tive of less than 30-m depth) is inadequate as a proxy for VS30. This dilemma with young
alluvial deposits is common for VS30 estimates that rely on surface geology (e.g., Wills and
Gutierrez 2009).

Related to this issue is the dominance of the Christchurch city data. An alternative
approach would be to generate another model by choosing a sparser sampling distance

Figure 14. The kriged σ maps for the (a) geology-based and (b) terrain-based models. Lower
uncertainty corresponds to locations of VS30 data (Figure 2).
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for the Christchurch data and thereby decreasing the weight accorded to urban data. Ulti-
mately, this decision represents a trade-off that should be informed by application. Our
view is that VS30 data density is generally correlated with population density for good reason,
and for engineering applications, it is acceptable to allow data to drive the model, irrespective
of the unavoidable spatial clustering.

MVN METHOD

Worden et al. (2018) present a more generalized geostatistical approach than kriging,
which we refer to as the multivariate normal (MVN) method. The primary advantage of
this method in our work (compared with RK) is that it allows for assumptions about mea-
surement uncertainty to be applied on a location-by-location basis.

In conventional kriging, if the nonspatial component of variance—the nugget—is zero,
then the interpolated mean surface is constrained to match the observational values at their
respective locations. A nonzero nugget means that the interpolated surface need not honor
the data precisely. The nonzero nugget has a dual physical meaning: on the one hand, the
tendency of the modeled system to exhibit spatial discontinuities, and on the other hand,
measurement uncertainty. In practice, these causes are rarely disentangled because many
collocated measurements would be required. A nonzero nugget in the variogram is formally
equivalent to modeling the measurement process as a Gaussian spatial process with a dis-
continuity at the origin of the correlation function. But importantly, in conventional kriging, a
nonzero nugget is the same across the problem domain. By contrast, in the MVN approach,
explicit assumptions about measurement uncertainty are enforced via “correlation adjustment
factors” that can be assigned to measurements on an individual basis. The output σ can be
different at different data points in accordance with the respective input measurement uncer-
tainties. Correspondingly, individual observations exert a “pull” on the interpolated surface
that is inversely correlated with measurement uncertainty. The variogram nugget is thus
effectively localized for data from different sources. (The MVN results reduce to be equiva-
lent to the kriging results with zero nugget for the special case where all measurement uncer-
tainties are set to zero.)

We assigned each input datum a lognormal measurement uncertainty, σmeas:. These
values were chosen following the discussion in the Data Sources section and are tabulated
in the online supplement. Assigning σmeas: is not trivial or objective (e.g., McElreath 2015).
However, given that measurement uncertainty is a “nuisance parameter,” in the parlance of
Gelman et al. (2014, pp. 63–64), it is intuitive to expect that the chosen value of σmeas:
becomes insignificant in regions of dense data (e.g., Christchurch city) and therefore impacts
the model most strongly in regions with little data. Moreover, this framework allows for
future model refinements on the basis of more and better observational data.

Correcting Overpredictions from Cross-Boundary Extrapolation

The issue of “cross-boundary extrapolation” was discussed earlier as it pertains to RK.
Here, we propose a novel solution that entails modifying the correlation function ρðuÞ for
every unique pairwise combination of locations in the problem domain. To this end, a coef-
ficient is introduced: the “covariance reduction factor” (CRF) with a value between 0 and 1.
The CRF is a function of the “difference” between two points of interest. Qualitatively, in this
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context, “difference” implies the appropriateness in general of assuming nonzero correlation
between two locations irrespective of their separation distance. Quantitatively, 0 ≤ CRF ≤ 1.

A proxy variable needs to be selected to choose CRF given two locations, x1 and x2. We
chose the ratio of the two corresponding model VS30 predictions, since this reflects the most
pertinent information contained in both the geology-based and terrain-based models. Alter-
natives could be chosen, for example, the ratio of slopes alone or a more complex assessment
of the geologic map. The function for CRF is chosen as follows:

EQ-TARGET;temp:intralink-;e6;41;548CRF ¼ exp

�
�a

���� lnVS301

VS302

����
�

(6)

which ensures CRF ¼ 1 for VS301 ¼ VS302 with exponential decay as the ratio of the baseline
VS30 estimates decreases. We selected a ¼ 1.5 based on the heuristic that the decay function

ought to yield CRF ≈ 0.1 (i.e., almost no correlation) for the ratio
VS301
VS302

≈ 5; see Figure 15.

This corresponds to an arbitrary reference hypothetical in which VS301 ¼ 1;000m∕s and
VS302 ¼ 200m∕s, i.e., “rock” and “soil.” This heuristic is necessarily arbitrary and reflects
an intuition about the complexity of geologic processes that depart from idealized assump-
tions underlying geostatistical methods. While there are alternative approaches to represent-
ing this complexity, the proposed method appears to handle the issues well globally and relies
on the selection of only a single parameter. This is desirable for updating the model in a more-
or-less automated fashion in the future as additional data are incorporated into the model.

To apply this modification to the MVN method, CRF is computed in accordance with
Equation 6. Then Equation 7 from Worden et al. (2018) is adjusted by defining a modified
correlation coefficient:

EQ-TARGET;temp:intralink-;e7;41;326ρ 0
YiYj

¼ ρYiYj
CRFYiYj

(7)

Results

The result of the covariance-weighted MVN application is presented in Figure 16. The
ratios of the results in Figure 16 to the RK models (Figure 13) are shown in Figure 17. σ for
the covariance-weighted MVN model is shown in Figure 18.
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Figure 15. Several example covariance reduction functions.
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Three items are noteworthy in comparing the performance of the RK and MVN methods
(Figure 17):

1. In regions where data are dense, such as Christchurch city, the models yield virtually
the same predictions. The collocation of many VS30 datapoints results in a smoothing
effect whose details are largely unchanged by the addition of measurement uncertainty.

2. In regions where data are sparse, such as the rural Canterbury plains, the models are
slightly different in the vicinity of data because of the way RK and MVN differ
in handling measurement uncertainty. The baseline VS30 estimate (geology or

Figure 16. Covariance-adjusted MVN model VS30 estimates for (a) geology-based and
(b) terrain-based models. The overprediction noted in the RK (Rakaia area, Figure 13) is
eliminated.

Figure 17. Covariance-adjusted MVNmodel VS30 predictions compared with RK predictions for
(a) geology-based and (b) terrain-based models.
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terrain model) has no effect at the precise location of an observation for RK, whereas
the observation and baseline model estimates are combined in the MVN method,
with the proportional influence being a function of the assumed measurement
uncertainty.

3. The localized overprediction in the Rakaia area, noted previously, has been resolved
by the MVN method. The different degrees of covariance applied across the geo-
logic boundaries in this area are clear in Figure 17a.

MERGING GEOLOGY AND TERRAIN MODELS

To summarize the preceding discussion, the MVN method is more general and more
statistically sound than RK because it allows pointwise assignment of measurement uncer-
tainty, albeit at the expense of longer computation time. The “covariance reduction” method
proposed is a transparent and automated way of handling potentially misleading extrapola-
tion of normalized residuals across geologic boundaries. Consequently, we present the MVN
model versions as superior to the more conventional RK results. In this section, we combine
the geology-based and terrain-based models into a final model.

Having conditioned each constituent model on available data and applied geostatistical
interpolation, we see no reason to favor one model over the other and assign each a weighting
of 0.5. The decision to weight the two models equally, rather than favoring one over the
other, is motivated by the assumption that aspects of the geology-based and terrain-based
approaches are mutually complementary. For example, the geology categories can convey
information pertaining to VS30 that may not be readily discriminated by the terrain categories,
but the terrain data are more spatially uniform, less subject to human interpretation, and may
indicate finer detail in local VS30 variations and more accurate velocity contrast boundaries,
particularly in areas where the geology map is derived from digitizing older regional-
scale maps.

Figure 18. Covariance-adjusted MVN model σ for (a) geology-based and (b) terrain-based
models.
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The weighting is done as follows:

EQ-TARGET;temp:intralink-;e8;62;627VS,30f inal ¼ exp

�Xn
i¼1

wi lnVS,30i

�
(8)

where in general
P

i wi ¼ 1 and in the present application (combining two equally weighted
models) n ¼ 2 and w1 ¼ w2 ¼ 0.5. The combining of uncertainty represents a “mixture pro-
blem”: If the constituent models predict similar VS30 and have small σ, then the resulting σ is
a compromise between the two input σ values. On the other hand, if the two models predict
significantly different VS30 values, then the combined uncertainty is high, even if the con-
stituent models have low σ:

EQ-TARGET;temp:intralink-;e9;62;506σ2f inal ¼
Xn
i¼1

wi

��
lnVS,30i � lnVS,30f inal

�
2

þ σ2i

�
(9)

where again, n ¼ 2 and w1 ¼ w2 ¼ 0.5. Once more, this is functionally equivalent to
Bayesian updating with equal weighting of “prior” (geology-based model) and “data”

Figure 19. (a) VS30 and (b) σ for the final weighted model.
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(terrain-based model; e.g., McElreath 2015). The weighted, final model median VS30 estimate
and lognormal σ are presented in Figure 19.

CONCLUSIONS

A VS30 model for NZ has been developed. The salient features of the model include a fine
(100 m) resolution; making use of both geology and terrain covariates; a consistent, local
VS30 data inclusion via a transparent and readily updateable Bayesian framework; lognormal
standard deviations alongside median VS30 estimates; and a novel modification to the MVN
method (Worden et al. 2018) that reduces covariance for observation-prediction pairs that
cross geologic/geomorphic boundaries, yielding heuristically sensible VS30 estimates near
these boundaries. The model represents an improvement over recent VS30 models for NZ,
which have used geology proxy variables but have not quantified uncertainty or employed
geostatistical methods.

The model can be updated relatively easily, and it is expected that recent field work
performed in Nelson, Auckland, and Wellington will be incorporated into an incremental
update in the near future.

The code repository for this work is available on GitHub (Foster 2018).
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